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8. Lj. Gajić, N. M. Ralević: A common fixed point result in strong JS-metric

space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113



Bulletin T. CLI de l’Académie serbe des sciences et des arts − 2018
Classe des Sciences mathématiques et naturelles
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1. S. Pilipović: Contributions to generalized asymptotics

Academician Bogoljub Stanković and Stevan Pilipović (SP) had collaborated on
22 publications four of which are monographs published by the world’s leading pub-
lishers. Their main joint interests were generalized asymptotics, especially quasi-
asymptotics and the S-asymptotics. Note that there are several approaches to general-
ized asymptotics in spaces of generalized functions. The most developed approaches
are those of Vladimirov, Drozhinov and Zavialov [12] (see also [6], [11]), and of
Kanwal and Estrada [7], [8]. The first approach is extended in the direction of the
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S−asymptotics by Stanković an SP [4], [5]. Separately, with the coauthors Arpad
Takači and Jasson Vindas, Bogoljub Stanković and SP have published two mono-
graphs. The first one [3] deals with the results concerning basic notions of quasi-
asymptotics and integral transforms, while the second one [10] published 22 years
later, gives a more complete analysis of various types of generalized asymptotics in-
cluding the S-asymptotics, on various spaces of distributions, ultradistributions and
Fourier hyperfunctions with the emphasis on Tauberian type theorems for general-
ized integral transforms. Of course, it is not possible in this very short article present
even a part of those results with all the details. The writer decided to quote here basic
definitions and results related to the S-asymptotics. The notion of S-asymptotics was
mentioned marginally earlier in the literature without special attention to the struc-
tural representations and general theory related to Abelian and Tauberian type results
for functions, distributions, ultradistributions and hyperfunctions.

It is necessary to mention that the class of regularly varying functions, so impor-
tant in the classical asymptotic analysis introduced by Karamata [9] (see also [1]),
also obtained very important role in the generalized asymptotic analysis. (The mono-
graph [1]. gives collected results related to the theory and the applications of regular
varying functions.)

The shift asymptotics defined by Drozhinov and Zavialov, was later called S-
asymptotics by the authors of [3] and [10]. It is said that a tempered distribution
T supported by [0,∞) has the shift asymptotics at infinity related to the regularly
varying function r(t) = taL(t) if

T (t+ k)/r(t) → g(t), k → ∞ (1.1)

in the sense of convergence in the space of tempered distributions. We have adapted
and made precise the S-asymptotic behavior of generalized functions and studied
this type of the asymptotic behavior for distributions, ultradistributions and hyper-
functions giving a structural characterizations of comparison functions and the limit
function, cf. [3], [4], [5] .

Conceptually, in this short presentation, the asymptotic behavior is considered
within a dual space F ′ of a barrelled and Montel locally convex space F . The spaces
of distributions D′, tempered distributions S ′ non-quasy analytic ultradistributions
D′∗ (∗ is the joint notation for Beurling and Roumieu type ultradistributions which
correspond to the Gevrey sequence (Mp = p!s), s > 1), Fourier hyperfunctions Q
are of this kind. In this presentation F will always denote one of these spaces. As
it is written, the length of this article is very limited so the definition of any of these
spaces is skipped. The same is done for a very long list of references relevant for
this field; for the most completed list of references one should look [10] from 2012.



Bogoljub Stanković: Contributions to generalized asymptotics and mechanics 29

Moreover, several important papers vere publised (after this book) by J. Vindas and
SP.

Asymptotic behavior of generalized functions Let Γ be a convex cone. Let
h1, h2 ∈ Γ. We say that h1 ≥ h2 if and only if h1 ∈ h2+Γ; Γ is now partially ordered.
For a real-valued function f defined on Γ, we write limh∈Γ, h→∞ f(h) = A ∈ R
if for any ε > 0 there exists h(ε) ∈ Γ such that f(h) ∈ (A − ε, A + ε) when
h ≥ h(ε), h ∈ Γ. The S-asymptotics is defined as:

lim
h∈Γ, h→∞

〈T (x+ h)/c(h),ϕ(t)〉 = 〈u,ϕ〉, ϕ ∈ F . (1.2)

In case n = 1 limits (1.1) and (1.2) coincide. We list the main properties.

Proposition 1.1. Let Γ be a convex cone and T (t + h)
s∼ c(h)U(t), h ∈ Γ.

Then: a) There exists a function d on Γ such that

lim
h∈Γ, &h&→∞

c(h+ h0)/c(h) = d(h0) for every h0 ∈ Γ .

b) The limit U satisfies the equation U(·+ h) = d(h)U, h ∈ Γ.
c) Let intΓ ∕= ∅ (intΓ is the interior of Γ) and T (x + h)

s∼ c(h)U(t), h ∈ Γ,
where c is a positive function defined on Rn. Then:

c1) For every h0 ∈ Rn there exists

lim
h∈(h0+Γ)∩Γ,&h&→∞

c(h+ h0)/c(h) = d̃(h0) .

c2) d̃(x) = exp(α · x), x ∈ Rn, where α is a fixed element of Rn .
c3) U(t+ h) = d̃(h)U(t), h ∈ Rn and U(t) = C exp(α · t) for some C ∈ R.

We only assumed that c is a positive function. But if we know that there exist
T ∈ F ′ and U ∕= 0 such that T (x + h)

s∼ c(h)U(t), h ∈ Γ, then we can find a
function c̃ ∈ C∞ and with the property

lim
h∈Γ,&h&→∞

c̃(h)/c(h) = 1.

This function c̃ can be defined as follows: c̃(h) = 〈T (x + h), ϕ̃(x)〉/〈U, ϕ̃〉, where
ϕ̃ is chosen to give 〈U, ϕ̃〉 ∕= 0. In this sense we can sometimes suppose that c ∈ C∞,
and we do not lose in generality.

Similarly, we have limh∈Γ′,&h&→∞ c(h)/c̃(h + x) = exp(−α · x) in E if
intΓ ∕= ∅,Γ′ ⊂⊂ Γ (Γ ∩ Sn−1 is compact in Γ ∩ Sn−1).

In the one-dimensional case a cone Γ can be only R,R+ or R−. In all three cases
intΓ ∕= ∅. Consequently, d̃ from Proposition 1.2 has the form d̃(x) = exp(αx),
where α ∈ R.
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Let c(x) = L(ex) exp(αx), x ∈ Rn. We will show that L is a slowly varying
function. By Proposition 1.2 a), there exists the limit

lim
h∈Γ,&h&→∞

L(exp(h+ h0))/L(exp(h)) = 1, h0 ∈ Rn,

which implies limx∈R+,x→∞ L(xp)/L(x) = 1, p ∈ R+ and this defines a slowly
varying function. Thus if T ∈ F ′(R) and T (x + h)

s∼ c(h)U(t), in Γ ⊂ R, then
it follows that c has the form c(x) = exp(αx)L(exp(x)), x ≥ a > 0, where L is a
slowly varying function.

Basic properties of the S-asymptotics.
We continue with the collection of main assertions.

Theorem 1.1. Let T ∈ F ′. a) If T (t + h)
s∼ c(h)U(t), h ∈ Γ, then for every

k ∈ Nn
0 , T

(k)(t+ h)
s∼ c(h)U (k)(t), h ∈ Ga. In particular, we have U (k) ∕= 0;

b) Let g ∈ M(·) (set of multipliers of F ′; let c, c1 be positive functions. If for every
ϕ ∈ F , (g(t+ h)/c1(h))ϕ(t) converges to G(t)ϕ(t) in F when h ∈ Γ, .h. → ∞
and if T (t+ h)

s∼ c(h)U(t), h ∈ Γ, then g(t+ h)T (t+ h)
s∼ c1(h)c(h)G(t)U(t),

h ∈ Γ.

c) If T ∈ F ′, suppf is a compact set in Rn, then T (t + h)
s∼ c(h) · 0, h ∈ γ,

for every positive function c.

d) Let S ∈ F ′, suppS being compact. Suppose that in F ′, the convolution is
defined and is hypocontinuous. If T (t+h)

s∼ c(h)U(t), h ∈ γ, then (S∗T )(t+h)
s∼

c(h)(S ∗ U)(t), h ∈ Γ;

e) Let T ∈ F ′ = D′∗ and T
s∼ c(h) · U, h ∈ Γ, in D′∗. Let P (D) be an

ultradifferential operator of class ∗. Then

P (D)T
s∼ c(h) · P (D)U, h ∈ γ, in D′∗.

f) Let f ∈ F = Q(Dn). Let P (D) be a local operator and f(x + h)
s∼ c(h) ·

u(x), h ∈ Γ, .h. → ∞ in Q(Dn), then P (D)f(x + h)
s∼ c(h) · P (D)u(x), h ∈

Γ, .h. → ∞ in Q(Dn), as well.

Theorem 1.2. 1) Let f, g ∈ D′(R) and for some m ∈ N, g(m) = f .

a) If f(x + h)
s∼ hνL(h) · 1, h ∈ R+, where ν > −1, then g(x + h)

s∼
hν+mL(h) · 1, h ∈ R+.

b) If f(x+ h)
s∼ exp(αh)L(exph) exp(αx), h ∈ R+,α ∈ R, and

! x

0
exp(αh)L(exph)dh → ∞,
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when x → ∞, then

g(x+ h)
s∼

h!

0

hm−1!

0

· · ·
h1!

0

exp(αt)L(exp t)dtdh1 . . . dhm−1 exp(αx), h ∈ R+.

2) Let φ0 ∈ C∞
0 (R) such that

"
φ0(t)dt = 1 and let f ∈ D′(R). If

lim
h→∞

#
f (i)(x+ h)

exp(αh)L(exph)
,φ0(x)

$
= αi〈exp(αx),φ0(x)〉, i = 0, 1, . . . ,m− 1,

f (m)(x+ h)
s∼ exp(αh)L(exph)αm exp(αx), h ∈ R+,

then
f(x+ h)

s∼ exp(αh)L(exph) exp(αx), h ∈ R+.

3) Suppose that T ∈ D′, Γ = {x ∈ Rn; x = (0, . . . , xk, 0, . . . , 0)} and T =
(∂/∂xk)S. If T (t+ h)

s∼ c(h)U(t), h ∈ Γ and c(h) is locally integrable in hk such
that

c1(hk) =

hk!

h0
k

c(v)dvk → ∞ as hk → ∞, h0k ≥ 0,

then S(t+ h)
s∼ c1(h)U(t), h ∈ Γ.

4) Suppose that S ∈ D′ and that for an m ∈ {1, 2, . . . , n},

(DtmS)(x+ h)
s∼ c(h) · U(x), h ∈ Γ.

Let V ∈ D′, DtmV = U and φ0 ∈ D(R),
"

R
φ0(τ)dτ = 1. Let

lim
h∈Γ,&h&→∞

〈S(x+ h)/c(h),φ0(xm)λm(x̃)〉 = 〈V,φ0λm〉,

where x̃ = (x1, . . . , xm−1, xm+1, . . . , xn) and

λm(x̃) =

!

R

ψ(x1, . . . , xm, . . . , xn)dxm, ψ ∈ D.

Then S(x+ h)
s∼ c(h)V (x), h ∈ Γ.
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If a distribution has the S-asymptotics in D′, it has the same S-asymptotics in the
space of ultradistributionsD′∗. The converse does not hold.

Classical and generalized S-asymptotics

Proposition 1.2. Let a regular generalized function f̃ ∈ D′(R), be defined by a
function f, which has one of the four properties for α > 1, β > 0, x ≥ x0, h >
0,M > 0 and N > 0 :

a) f(x+ h) ≥ M exp(βhα)f(x) ≥ 0,

a’) −f(x+ h) ≥ −M exp(βhα)f(x) ≥ 0,

b) 0 ≤ f(x+ h) ≤ N exp(−βhα)f(x), v
b’) 0 ≤ −f(x+ h) ≤ −N exp(−βhα)f(x).

Then f̃ cannot have the S-asymptotics with the limit U ∕= 0. But the function f can
have the asymptotics.

It is easy to show that for some classes of real functions f on R the asymptotic
behavior at infinity implies the S-asymptotics of f̃ .

Proposition 1.3. a) Let c be a positive function and T̃ be a regular distribution
defined by T ∈ L1

loc(Rn). Suppose that there exist locally integrable functions U(t)
and V (t), t ∈ Rn, such that for every compact set K ⊂ Rn we have in L1

loc(Rn)

|T (t+ h)/c(h)| ≤ V (t), t ∈ K, .h. > rK ,

lim
h∈Γ,&h&→∞

T (t+ h)/c(h) = U(t), t ∈ K.

Then, T̃ (t+ h)
s∼ c(h)U(t), h ∈ Γ in F ′.

b) Let T ∈ Lloc(R) and T (x) ∼ exp(αx)L(expx), x → ∞,α ∈ R, where L is
a slowly varying function. Then, T̃ (x+ h)

s∼ exp(αh)L(exph) exp(αx),
h ∈ R+ in F ′(R).

A more general assertion is the following one.

Proposition 1.4. Let Γ be a cone and Ω ⊂ Rn be an open set such that for every
r > 0 there exists a βr such that B(0, r) ⊂ {Ω− h; h ∈ Γ, .h. ≥ βr}.

Suppose that G ∈ L1
loc(Ω) and has the following properties: There exist locally

integrable functions U and V in Rn such that for every r > 0 we have in L1
loc(Ω)

|G(x+ h)/c(h)| ≤ U(x), x ∈ B(0, r), h ∈ Γ, .h. ≥ βr;

lim
h∈Γ,&h&→∞

G(x+ h)/c(h) = V (x), x ∈ B(0, r).

If G0 ∈ F ′ is equal to G̃ defined by G on Ω, then

G0(x+ h)
s∼ c(h)V (x), h ∈ Γ.
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The following proposition gives the sufficient condition under which the S-asymp-
totics of an F̃ ∈ D′(R) defined by f ∈ L1

loc(R) implies the asymptotic behavior of f .

Proposition 1.5. Let f ∈ L1
loc(R), c(h) = hβL(h), where β > −1 and L be

a slowly varying function. If for some m ∈ N, xmf(x), x > 0, is monotonous and
f̃(x + h)

s∼ c(h) · 1, h ∈ R+, then lim
h→∞

f(h)/c(h) = 1. If we suppose that L is

monotonous, then we can omit the supposition that β > −1.

General S-asymptotic expansion
Let Γ be a convex cone with the vertex at zero belonging to Rn and Σ(Γ) the set of

all real-valued and positive functions c(h), h ∈ Γ. We shall consider the asymptotic
expansion when .h. → ∞, h ∈ Γ.

A distribution T ∈ F ′ has the S-asymptotic expansion related to the asymptotic
sequence cn(h) ⊂ Σ(Γ), if for every ϕ ∈ F

〈T (t+ h),ϕ(t)〉 ∼
∞%

n=1

〈Un(t, h),ϕ(t)〉|{cn(h)}, .h. → ∞, h ∈ Γ,

where Un(t, h) ∈ F ′ for n ∈ N and h ∈ Γ. We write for short:

T (t+ h)
s∼

∞%

n=1

Un(t, h)|{cn(h)}, .h. → ∞, h ∈ Γ.

In the special case Un(t, h) = un(t)cn(h), un ∈ F ′, n ∈ N, we write

T (t+ h)
s∼

∞%

n=1

un(t)cn(h), .h. → ∞, h ∈ Γ.

In this case the given S-asymptotic expansion is unique.
Suppose that f ∈ F ′(R). It is said that f(x)eixt has the asymptotic expansion

related to the asymptotic sequence ψn(t) if for every ϕ ∈ F(R)

〈f(x)eixt,ϕ(x)〉 ∼
∞%

n=1

〈Cn(x, t),ϕ(x)〉|{ψn(t)}, t → ∞,

where Cn(x, t) ∈ F ′(R), n ∈ N, t ≥ t0.
We write in short

fei·t ∼
∞%

n=1

Cn(·, t)|{ψn(t)}, t → ∞.

Concluding remark. This short overview just illustrates a part of the work of
Academician Bogoljub Stanković. He published many papers related to this topic.
As it is written, a very rich bibliography in [3] and [10] contains the list of all his
papers related to generalized asymptotics and applications.
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2. T. Atanacković: Contributions to Mechanics

The work of Prof. Stanković in the field of Mechanics belongs to Viscoelas-
ticity of fractional derivative type and to elastic rod theory with discontinues. He
was studying problems of existence of solution to the equations of motion as well as
regularity and stability of solutions for viscoelastic bodies in the case when constitu-
tive equations contain fractional derivatives. Also, equations arising from variational
principles of Mechanics, for the case when Lagrangian density contains fractional
derivatives, are studied in several works. He also obtained results in the static theory
of rods for the case when, either properties of the material, or geometry of the rod is
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described by discontinuous functions [11], [16]. The results of Prof. Stanković in the
field of Mechanics are published in references [1]–[24]. Most of the results are also
presented in books [25]–[26].

In models with fractional partial differential equation, after the separation of vari-
ables, the type of ordinary fractional differential equation that was studied, is of the
form

m%

i=0

Ai 0D
αi
t y(t) = f(t), 0 < t ≤ b, (2.1)

where αi = ni − 1 + γi, i = 0, . . . ,m, ni ∈ N, γi ∈ (0, 1]; 0 ≤ α0 < α1 < · · · <
αm ≤ nm; if α0 = 0, then n0 = 0 and γ0 = 1 and if αm = nm, γm = 1. Here we
use the following notation for the left Riemann-Liouville fractional derivative: Let
α = n − 1 + γ, n ∈ N, γ ∈ (0, 1]. Then for n − 1 < α ≤ n the left Riemann-
Liouville fractional derivative of order α is defined as

0D
α
t y(t) =

1

Γ(1− γ)

&
d

dt

'n
t!

0

y(τ)dτ

(t− τ)γ
,

0D
α
t y(t) = Dn y(t), α = n.

The fractional differential equations of the type (2.1) appear in many problems of
Mechanics. For example, such equations arise in problems describing transversal
vibrations of viscoelastic rod. The second type of equations that was studied by Prof.
Stanković corresponds to wave propagation in nonlocal elasticity. The corresponding
partial differential equation is

∂2u(t, x)

∂t2
+A( 0D

β
t u(t, x)) = B

1

2

∂

∂x

(
−∞Dα

xu(x, t)−xD
α
∞u(x, t)

)
,

t ≥ 0, x ∈ R, u(0, x) = C1(x),
∂u(t, x)

∂t

***
t=0

= C2(x), (2.2)

where 0 < α < 1, 0 < β < 1 and A,B ∈ R. Here

−∞Dα
xF (x) =

1

Γ(1− α)

x!

−∞

F ′(u)du

(x− u)α
du, xD

α
∞F (x) =

−1

Γ(1− α)

∞!

x

F ′(u)du

(u− x)α
.

Both types of equations (2.1) and (2.2) are analyzed in a number of publications, see
[1]–[24].

Next we mention another group of results for a special type of fractional differ-
ential equations arising in fractional variational principles of Hamilton type. In the
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Euler-Lagrange equations for such problems both left and right Riemann-Liouville
fractional derivatives appear. Thus a generic equation is of the form [15]

tD
α
b [0D

α
t y (x)] + (A1 +A2) [0D

α
t y (x) + tD

α
b y (x)]

+B (x) y (x) = C (x) , 0 < x < b < ∞,

where A1, A2 are given constants and B is given function.
Finally, we present expansion formula for fractional derivatives that was obtained

in [8] and [18]. This formula gives the possibility to transform fractional differential
equation to the system of ordinary differential equations of integer order. In several
publications numerical aspects of such a procedure were examined. The main result
of these investigations is the expansion formula, that we state as: Suppose that

Given N and suppose that 0 < α < 1. Then the fractional derivative of a function
f ∈ C1 [0, T ] may be approximated as

0D
α
t f(t) ≈ f(t)

tα
+

1

Γ (2− α)

+
,

-f (1) (t)

.

/1 +
N%

p=1

Γ (p− 1 + α)

Γ (α− 1) p!

0

1 t1−α

−
N%

p=2

Γ (p− 1 + α)

Γ (α− 1) (p− 1)!

&
f (t)

tα
+

Vp (t)

tp−1+α

'23

4 , (2.3)

for t ∈ [0, T ] . Here

Vp−2 = (p− 1)

! t

0
τp−2f (τ) dτ,

are moments of the functionf . The expansion formula (2.3) was used in solving many
concrete problems in Mechanics in which linear and nonlinear fractional differential
equations appear. Some of the results of Prof. Stanković presented here are extended
and generalized in works of his collaborators. For example, the expansion formula
(2.3) was generalized to include fractional derivatives of complex order.
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[5] T. M. Atanacković, B. Stanković, On a system of differential equations with fractional

derivatives arising in rod theory, Journal of Physics A: Mathematical and General, 37
(2004), 1241–1250.
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[10] B. Stanković, T. M. Atanacković, Generalized solutions to a linear discontinuous dif-

ferential equation, J. Math. Anal. Appl. 324 (2006), 1462–1469.
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