SIXTEENTH ANNUAL CONFERENCE

YUCOMAT 2014

Hunguest Hotel Sun Resort Herceg Novi, Montenegro, September 1-5, 2014 http://www.mrs-serbia.org.rs

Programme and The Book of Abstracts

Organised by: Materials Research Society of Serbia

Endorsed by: Federation of European Material Societies and Materials Research Society

Title:	THE SIXTEENTH ANNUAL CONFERENCE YUCOMAT 2014 Programme and The Book of Abstracts
Publisher:	Materials Research Society of Serbia Knez Mihailova 35/IV, 11000 Belgrade, Serbia Phone: +381 11 2185-437; Fax: + 381 11 2185-263 http://www.mrs-serbia.org.rs
Editors:	Prof. Dr. Dragan P. Uskoković and Prof. Dr. Velimir Radmilović

Technical editor: Aleksandra Stojičić

Cover page: Aleksandra Stojičić and Milica Ševkušić Back cover photo: Author: Rudolf Getel Source: Flickr (<u>www.flickr.com/photos/rudolfgetel/4280176487</u>) Licence: CC BY 2.0

Copyright © 2014 Materials Research Society of Serbia

Acknowledgments: This conference is held in honour of Prof. Dragan Uskoković's 70th birthday.

Printed in: Biro Konto Sutorina bb, Igalo – Herceg Novi, Montenegro Phones: +382-31-670123, 670025, E-mail: bkonto@t-com.me Circulation: 220 copies. The end of printing: August 2014 P.S.B.24

PROPERTIES AND STRUCTURAL CHANGES OF THERMALLY AND MECHANICALLY ACTIVATED KAOLIN CLAY

<u>Aleksandra Mitrović</u>¹, Miodrag Zdujić², Ljiljana Miličić¹, Dragica Jevtić³

¹Institute for Testing of Materials, Belgrade, Serbia, ²Institute of Technical Sciences of SASA, Belgrade, Serbia, ³Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia

The paper presents properties of thermally and mechanically activated kaolin clay, with respect to its application as a pozzolanic additive in cement-based systems. Starting kaolin clay is mainly composed of minerals kaolinite and quarz. Properties of thermally activated clay in the laboratory furnace at temperature 650°C for 120 min (optimal conditions) are: pozzolanic activity of 0.45g Ca(OH)₂/g Pozz, mean particle size of 10.2 μ m and loss on ignition (LOI) of 0.88. Mechanical activation for 120 min in a planetary ball mill significantly affects the properties, activity is 0.74g Ca(OH)₂/g Pozz, mean particle size 4.5 μ m and LOI of 6.82. Structural changes were monitored using XRD and TG/DTA analysis. The advantage of mechanical activation is not only in the high activity and small mean particle diameter, but also in simplicity of the process and its environmental benefits.

P.S.B.25 X-RAY EMISSION AND MOSSBAUER SPECTRA AND ELECTRONIC STRUCTURE OF ScFe₂Si₂ AND HfFe₂S₂ COMPOUNDS

Ivan Shcherba^{1,3}, D. Uskoković² M. Sacharevych³, B.M. Jatcyk⁴

¹Institute of Technology, the Pedagogical University of Cracow, Cracow, Poland, ²Institute of Technical Sciences of SASA, Belgrade, Serbia, ³Ivan Franko National University of Lviv, Ukraine, ⁴University of Forestry and Wood Technology, Lviv, Ukraine

The valence band electronic structure of compounds with the $HfFe_2S_2$ crystal lattice type has been established for the first time based on X-ray emission spectroscopy measurements. Band structure and theoretical spectra of X-ray emission bands of atoms located in non-equivalent crystallographic positions are calculated by means of the LMTO method. A satisfactory agreement between theoretical and experimental data is achieved. As it can be seen from the performed calculations and experimental data, the *s*-states of Si hybridize with the *p*-states Sc (Hf) and Fe and are located at the bottom of valence band. Contribution of the *s*-symmetry electrons to the chemical bond is substantially different for Si atoms located in non-equivalent crystallographic positions. ⁵⁷Fe Mossbauer absorption measurements confirm iron atoms occupying non-equivalent positions in the crystal lattice.