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Abstract 

Most drug delivery systems as treatment modalities for osteomyelitis have not been 

evaluated for resistant infections. Tigecycline (TG) is an antimicrobial agent that could 

be used in the treatment of multi-drug-resistant orthopedic infections. The objective of 

this in vitro study has been to determine what dosage of TG causes changes in the 

morphology and number of osteoblasts. We have also investigated whether 

nanoparticulate tigecycline-loaded calcium-phosphate/poly(DL-lactide-co-glycolide) is 

biocompatible and whether it could release bioactive TG in a controlled manner during 

the observation time. The cytotoxicity was tested by analyzing the release of lactate 

dehydrogenase from dead osteoblasts to the medium. Staphylococcus aureus was used 

to verify the antibacterial effect of the multifunctional drug delivery system. At 

concentrations as achieved by local application, TG caused high toxic effect and 

impaired the normal osteoblastic morphology. The nanoparticulate multifunctional drug 

delivery system showed good compatibility and antibacterial effect during the 

observation time and thus appears to be suitable for the treatment of osteomyelitis 

caused by multi-drug-resistant microbes. 
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1. Introduction 

The septic disease osteomyelitis represents the worst complication in orthopedic surgery 

and traumatology. It is difficult to ensure effective bone transplantation and to treat the 

infection at the same time. The systemic administration of antibiotics cannot provide 

sufficient local drug concentration and long-term administration may cause side-effects. 

In patients with bone defects, such treatments must have two stages, i.e. the control of 

the infection, as the first, and bone grafting as the second stage. In recent years, diverse 

antibiotic delivery systems have been developed as treatment modalities in infectious 

bone injuries or chronic osteomyelitis. Their advantage rests in the possibility to achieve 

a high local antibiotic concentration without exposing the patient to systemic toxic 

levels [1-6]. Most antibiotic delivery systems have not been evaluated for unusual or 

resistant infections and their impact remains limited in the rapidly changing field of 

orthopedic microorganisms. Finally, once drug elution has tapered off, the carrier 

becomes another foreign body that fosters bacterial colonization.  

Multifunctional drug delivery systems (MDDS) are designed with the idea of ensuring a 

slow release of the drug, the elimination of the drug carrier and regeneration of the 

place at which the implant was placed. Poly(d,l-lactide-co-glycolide) (PLGA) is a 

biodegradable polymer with non-toxic degradation products that are easily removed 

from the organism by natural metabolite pathways. Nanoparticulate systems based on 

PLGA have also been the subject of research in the treatment of osteomyelitis. Calcium-

phosphate (CP) is chemically similar to the mineral component of bones and it has the 

capacity to promote and stimulate the regeneration of bone tissue [7-10]. 

Multifunctional nano drug delivery systems (MNDDS) for the controlled drug delivery 

based on calcium phosphates and bioresorbable polymers are the subject of our recent 

research related to bone engineering [7, 8, 11, 12]. The basic idea behind this concept is 

to exhibit the activity of MNNDS through two successive steps. The first step includes 

the controlled release of an antibiotic accompanied with polymer resorption. In the 

second step, CP particles coated with the polymer, which remain in place, act as filler 

for potential damages in bone tissue [7]. Composite biomaterials based on calcium 

phosphates in nanoparticulate form (NPs) compared to micro or submicron particles 

may have several advantages in terms of improving the quality of the treatment [13-15]. 

Different groups of composite biomaterials based on hydroxyapatite nano particles were 

synthesized for the purpose of reconstruction of bone tissue [16, 17]. 



Having in mind that currently used antibiotic therapy options have limited effect on 

antibiotic-resistant bacteria, such as gentamicin-resistant Staphylococcus aureus and 

methicillin-resistant Staphylococcus aureus (MRSA), there is an urgent need for new 

multifunctional antibiotic delivery systems to combat these resistant pathogens [18-21]. 

Tigecycline (TG) is the first in the new class of antimicrobial agents, the glycylcyclines, 

which are structurally derived from the tetracycline nucleus. The antimicrobial activity 

of TG is based on the inhibition of protein synthesis in bacteria, by binding them to the 

30S ribosome subunit, blocking the bond to the tRNA, on the mRNA–ribosome 

complex [22-25]. TG appears to find potential application in the treatment of severe 

orthopedic infections. Several case reports of the treatment of osteomyelitis, caused by 

multi-drug-resistant microbes, with TG have been published so far [26-28]. TG has 

displayed good bone penetration and a broad antimicrobial spectrum, including all the 

pathogens found in nosocomial orthopedic infections including MRSA [21]. 

The purpose of the study presented in this paper has been to examine the effects of 

different concentrations of tigecycline on osteoblast cells and find out the appropriate 

concentration of tigecycline in the multifunctional nano drug delivery system consisting 

of tigecycline-loaded CP/PLGA that can maintain antibacterial properties during 

potential applications in a living tissue. Despite the increasing use of tigecycline and the 

reported high concentrations in bone tissue, there are no data available concerning the 

direct effects of tigecyline on bone cells. The objective of this in vitro study has been to 

determine what dosage of tigecycline causes changes in the morphology of osteoblasts 

and reduces the number of osteoblast cells. We have also examined whether MNDDS 

based on tigecycline-loaded CP/PLGA is compatible and whether it can release 

bioactive TG in a controlled manner within three weeks; after that period, in vitro 

research were carried out. 

 

2. Materials and Methods  

2.1 Preparations of composite biomaterial  

Synthesis of a tigecycline-loaded nano composite biomaterial in which each calcium 

phosphate particle was coated with the bioresorbable poly-DL-lactide-co-glicolide 

polymer, was described early [7]. The calcium phosphate gel was added into completely 

dissolved polymer containing different ratios of Tigecycline (Tygacil/Tigecyclin, Wyeth 

Europe Ltd., Berkshire, SL6 OPH). The suspension was mixed at 18,000 rev/min, and 

then methanol was added. Afterwards, PVA (0.02% in water) was added into the 



suspension (PLGA/PVA = 10/1) [7]. Tigecyclin (T) content in the composite was 

obtained after calculating the encapsulation efficiency (%), according to the 

methodology presented in literature [29]; the encapsulation efficiency in our 

experiments was 70 ± 3%. Nano-sized particles of CP/PLGA (without tigecycline), 

CP/PLGA loaded with 0.6wt% tigecycline (CP/PLGA/TG0.6) and 5wt% tigecycline 

(CP/PLGA/TG5.0) were synthesized. Microstructural characterization was done by 

atomic force microscopy (AFM; Thermo Microscopes, Autoprobe CP Research). The 

samples were sterilized in a 60Co radiation facility, in air at room temperature, at a dose 

rate of 9 kGy/h, to absorbed doses of 25 kGy before use [7]. X-ray (XRD) analyses were 

made using a Bruker D8 advance diffractometer equipped with focusing Ge crystal 

primary monochromator that generates CuK radiation. The chemical composition was 

identified by infrared spectroscopy, performed on a Michelson interferometer with 

duplex mechanical bearings and a linear motor, resolution 32–0.5 cm-1, spectral range 

DTGS 7.8–400 cm-1, and an accuracy lower than 0.01 cm-1. 

 
2.2 Cell Culture  

The mouse osteoblast-like cell line, MC3T3-E1 (DSMZ, ACC210, Braunschweig, 

Germany) was routinely cultured in alpha-MEM (PAA Laboratories Gmbh, Austria) 

supplemented with 10% fetal calf serum (PAA Laboratories Gmbh, Pasching, Austria), 

100 U/ ml penicillin, and 0.1 mg/ ml streptomycin (PAA Laboratories Gmbh) at 37°C in 

humidified atmosphere of 95% air and 5% CO2. The test samples were placed in 24-

well cell culture plate and seeded with 2 x 105 cells in 0.5 ml medium.  

 

2.3 Cytotoxicity  

The cytotoxicity [30] was tested by analyzing the release of lactate dehydrogenase 

(LDH) into the cell culture medium. LDH was measured using the microplate based 

Cytotoxicity Detection Kit (LDH) (Boehringer, Mannheim, Germany). According to the 

manufacturer’s protocol, 50 μl of the cell culture medium was used and absorbance was 

measured at 492 nm using a plate reader (ASYS Hitech GmbH, EXPERT 96, Austria). 

The total protein content was measured using the microplate-based Pierce® BCA 

Protein Assay Kit and the working reagent was prepared according to the 

manufacturer's protocol; an amount of 250 μl of the cell culture medium was used and 

the absorbance was measured at 550 nm using a plate reader (ASYS Hitech GmbH, 

EXPERT 96, Austria). The culture medium without cells was used as a zero absorbance 



reference to calibrate the spectrophotometer. LDH activities were calculated in 

percentage of the LDH activity against the total cell death induced by 1% Triton X-100 

treatments (control).  

 

2.4 Tigecycline treatment 

Tigecycline antibiotic powder (Wyeth, USA) was solubilized following the 

manufacturers’ instructions to obtain six different concentrations (0, 0.5, 5, 50, 250, and 

500 μg/ml). The attachment of cells to the bottom of the culture plates was achieved 

after 24 h. The cells were incubated for another 24, 48 or 72 h before the assessment of 

the cell cytotoxicity and morphology. The cell medium was changed after 24 hours. The 

number of cells was 300,000 or 300,000 per hole in 1 ml. The results were expressed as 

a ratio of released LDH to the amount of untreated control cells.  

 

2.5 CP/PLGA tigecycline treatment 

After 24 h, the attachment of cells was achieved, the medium was removed, and 1 ml of 

fresh medium was added to each well containing 0.02 g pulver of CP/PLGA (without 

tigecycline), CP/PLGA/TG0.6 and CP/PLGA/TG5 [21]. Cells were then incubated for 

another 24, 48, and 72 h before the assessment of the cell cytotoxicity. We attempted to 

describe through quantitative parameters the manner in which extracts from CP/PLGA, 

CP/PLGA/TG0.6 and CP/PLGA/TG5 induce the LDH activity in the extracellular 

space. The medium was changed after 24, 48 and 72h. 

 

2.6 Morphology 

The morphology of the cells cultivated with different concentrations of TG and of those 

from the control (without tigecycline) culture were examined after 24, 48 and 72 hours 

using a light microscope with a 10x and a 40x objective (Olympus 1x70, Hamburg, 

Germany). 

 

2.7 Verification of the microbiological activity of tigecycline-loaded CP/PLGA  

In order to test the antibacterial activity of the released TG from tigecycline-loaded 

CP/PLGA, the growth inhibition of the most common organism causing osteomyelitis, 

S. aureus, was used [20,31]. Staphylococcus aureus ATCC 10832 was inoculated on the 

surface of nutrient agar plates. Six sterile blank 6-mm paper discs were placed on the 

surface of each inoculated agar plate. Each disc was loaded with 50μl of the standard 



TG solutions and incubated for 24 h, after which the diameters of the zones of complete 

inhibition (including the diameter of the disc) were recorded in millimeters. The 

concentrations were then plotted on a semilogarithmic scale versus their corresponding 

zone diameters to give a standard curve. Six-millimeters discs of CP/PLGA, 

CP/PLGA/TG0.6 and CP/PLGA/TG5 were incubated in sterile saline for 24 h, seven, 

14 and 21 days and after that, they were applied in triplicate to the prepared bioassay 

agar plates incubated at 30°C for 24 hours. The diameters of the zones of inhibition for 

the standards and the samples were measured manually. The six measurements per zone 

of inhibition (three measurements per sample × two replicates) were averaged. The 

concentrations of the samples were determined by comparing the mean zone size of the 

samples to the zone sizes of the standard curve and their corresponding concentrations. 

All measurements were documented with photos and performed by a person who was 

not involved in the research. 

 

2.8 Statistical analysis 

The statistical analysis was performed using the software package Sigma Plot version 

11.0. Groups of data were evaluated using a one-way analysis of variance (ANOVA) 

followed by the Kruskal-Wallis tests for all pair wise multiple comparisons or Dunn's 

for multiple comparisons versus the control group. The significance was set at p < 

0.001. The data were presented as the mean ± standard error. All experiments were done 

thrice with a minimum of four samples for each concentration and parameter. 

 

3. Results 

3.1 Tigecycline-loaded calcium phosphate/poly-DL-lactide-co-glycolide basic analysis  

Difraktogram of tigecycline-loaded calcium phosphate/poly-DL-lactide-co-glycolide 

loaded with 5wt% tigecycline (specimens with maximum ratio of TG) is shown in 

Figure 1a. In Figure 1b shows the FT-IR spectrum of the same material. 

The most intense peaks, in Figure 1a, at 31.80 (2 1 1), 32.20 (1 1 2), 32.90 (3 0 0) and 

49.50 (2 1 3) originate from calcium hydroxyapatite (HAp). Peaks at 16.90, 18.20, 23.10 

and 43.00 derived from tigecycline. The FT-IR spectra shown in Figure 1b are observed 

doublets with maxima at 1,035 and 1,092 cm-1, which are the most intense and originate 

from phosphate groups, and by a triplet with maxima at somewhat lower frequencies of 

561 and 603 cm-1, arising from the PO43- group vibrations [7]. The intense, sharp band 



at 1,760 cm-1 is attributed to C=O vibration from PLGA. The band at 1,521 cm-1 

corresponds to the most intense peaks from tigecycline C29H39N5O8.  

The microstructure of CP/PLGA and CP/PLGA/TG composite biomaterial was studied 

by AFM. Fig. 2 shows the morphology of the the CP/PLGA, CP/PLGA/TG0.6 and 

CP/PLGA/TG5 composite biomaterial prepared according to experimental procedures. 

It was established by linear AFM analysis that the average particle diameter of this 

composite varied from 65 to 95 nm. 

Figure 1.  

Figure 2. 

 

3.2 Cell morphology 

A treatment with TG leads to considerable changes in the cell morphology and the cell 

spread on the surface. After 72 hours of incubation, the control osteoblast-like cells 

were uniformly distributed on the culture plate and they exhibited the characteristic 

cuboidal morphology (figure 3a). The cell borders were well defined; the cells were 

attached to the surface and exhibited a spread, flattened shape (figure 3a). We observed 

no changes in the cellular morphology when the osteoblasts were treated with 0.5 

μg/mL, 5 μg/mL and 50 μg/mL TG (figure 3b). At a concentration of 250 μg /mL TG, 

there were fever cells in the focus and the cells became more fibroblast-like with a 

spindle shape and with long processes extending between cells (figure 3c). At 500 μg 

/mL, this tendency was even more pronounced (figure 3d). 

Figure 3.  

 

3.3 Lactate dehydrogenase assay 

All doses of TG greater than 50μg/mL on days 1, 2 and 3 resulted in an increased (p < 

0.001) release of LDH compared to that of the control cells (figure 4). Although the data 

collected on days 1 and 2 showed a similar downward trend when the osteoblasts were 

treated with 0.5 μg/mL, 5 μg/mL TG, there have been no significant differences from 

the controls. As far as the time effect at each concentration of TG is concerned, the 

LDH activity did not significantly change at any concentration of the antibiotic during 

the observation period. 



Compared to the corresponding controls at each time point, CP/PLGA/TG0.6 did not 

reveal cytotoxic effects (figure 5). A significantly decreased LDH activity was observed 

in the CP/PLGA/TG5 incubated for between 24 and 72 h (p < 0.001).  

Figure 4.  

Figure 5.  

3.4 Microbiological activity of the released tigecycline from tigecycline-loaded 

CP/PLGA 

The results of the TG biological activity test are presented as the mean value in table 1. 

CP/PLGA did not exhibit any biological activity. CP/PLGA/TG0.6 and CP/PLGA/TG5 

showed an average zone of inhibition of 19 and 30 mm, respectively. The zones of 

inhibition indicate that biologically active TG is present in the sample. Different 

biological effect of the samples corresponds to different concentrations of the antibiotic. 

The inhibitory activity of the diluents and their effect on the standard curve did not 

allow for the quantification of the amount of TG. 

Table 1.  

4. Discussion 

XRD analysis results indicate the presence of calcium phosphate phases and tigecycline 

in the synthesized powder. Form of XRD peaks in Figure 1a shows the existence of 

poorly crystalline calcium hydroxyapatite. PLGA polymer because of its amorphous 

structure does not show the diffraction peaks. Based on the position and intensity of the 

characteristic peaks of tigecycline (16.9°, 18.2°, 23.1° and 43.0°) it is likely that the 

given phase is tigecycline crystalline form I. There are different crystalline forms of TG 

and the results indicate the existence of consent forms I [32, 33].  

FTIR spectrum is shown in Figure 1b confirmed the existence of HAp, TG and PLGA 

phase in the synthesized powder.  

The AFM image of the composite without tigecycline is shown in Fig. 2a and it 

indicates an average particle diameter of around 65 nm. The AFM morphology of the 

composite containing 0.6% and 5% of tigecycline is shown on Fig. 2b, c. Undoubtedly, 

the increase in the tigecycline content within the composite leads to the increased 

average particle diameter up to 95nm. In accordance with the XRD and FTIR results, 

CP particles coated with tigecycline-loaded PLGA were obtained. In our previous 

studies it was shown that the average particle size ranges of the nano-sized powder 

between 65 and 95 nm [7].  



Although the efficacy of the local antibiotic delivery systems is beyond dispute, the 

effect of high doses of antibiotics on local tissues is not well covered in relevant 

literature. The literature data indicate that increased antibiotic concentrations are 

accompanied with an increase in toxicity, suggesting that higher doses of the antibiotic 

may be better for the control of the infection; however, they are by no means benign 

[34]. It is important to take into consideration that most local delivery systems release a 

very high dose of antibiotics; in some cases the concentration is higher than 1000 times 

the MIC 90 [35-38]. 

To our knowledge, the present study has demonstrated the inhibitory effects of pure TG 

and the TG released from tigecycline-loaded CP/PLGA on osteoblasts in vitro for the 

first time. In the interpretation of our data, we have noted important caveats. First, we 

focused on the cytotoxicity and did not evaluate the cellular function in detail. The full 

bio programme has been beyond the scope of this paper. In addition, we evaluated the 

effect of the antibiotics in an in vitro system and our findings may not be directly 

applicable to an in vivo situation. 

We have shown that the TG treatment at serum and bone concentrations achieved in a 

conventional intravenous antibiotic therapy 0.5 μg/ml – 5 μg/ml neither yields toxic 

effects nor causes morphological change in osteoblasts in vitro [31,37]. A concentration 

of tigecycline one-hundred-fold higher than MIC 50 for coagulase-negative 

staphylococci (CNS) did not cause negative effects on osteoblasts, which indicates that 

tigecycline could be used as a part of MDDS [39]. Higher concentrations, 250 μg/ml 

and above, caused high toxic effect and impaired normal osteoblastic morphology, 

indicating a fibroblastic rather than osteoblastic phenotype, maybe in a sense of 

dedifferentiation. The effect of the concentrations of TG, 500- or 1000-fold higher than 

MIC 50 for CNS, indicates that a MDDS based on TG could be compatible only if it 

had a well controlled antibiotic release rate. The cytotoxic and cytostatic effects of 

tetracycline on osteoblasts could be explained by a mitochondrial energetic impairment. 

Tetracycline is known to inhibit the bacterial protein synthesis, as well as the eukaryotic 

protein synthesis and protein synthesis of isolated mitochondria [37, 40-42]. Significant 

morphological changes of cells in spread, cell membrane, and extensions were also 

detected with the use of other antibiotics (ciprofloxacin, vancomycin) over the dose 100 

μg/ml [43]. 

We have demonstrated that there was no impact on the percentage of viable osteoblasts 

incubated with CP/PLGA in the first 24 h, which is in accordance with our earlier 



research [44]. Low cytotoxicity values are probably the consequence of high 

compatibility of both constituents of the biocomposite material. The investigation of the 

time effect on each sample showed that the extracts from CP/PLGA increased 

significantly the LDH activity at each time point, but this activity was no more than two 

folds higher than that of the controls. Faster degrading polymers, like low–molecular-

weight PLGA or PLA, can give rise to a cytotoxic reaction due to the production of 

acidic degradation products [45-47]. 

Compared to the corresponding controls at each time point, CP/PLGA/TG0.6 did not 

reveal cytotoxic effects. During the first day, eight percent of the total TG was released, 

calculated 9.6 µg of TG; [7] this concentration of TG did not cause cytotoxic effects. 

The lower LDH activity in the cells incubated with CP/PLGA/TG0.6 than that in the 

cells incubated with CP/PLGA can be explained by a positive proliferation effect of 

tetracycline on osteoblasts [40]. The mechanisms underlying the effects of tetracyclines 

on osteoblastic cells remain unclear. However, tetracyclines can inhibit collagenase 

and/or the breakdown of collagen under a variety of conditions. These events might 

result in improved osteoblastic behaviour, having in mind that a stable collagenous 

matrix is known to play a significant role in the osteoblastic proliferation/differentiation 

sequence [48-50]. CP/PLGA/TG5 significantly decreased the LDH activity from 24 to 

72 h. This can be explained by the high TG release in the first day and its deleterious 

effect on osteoblasts. During the first day, 20% of the total TG was released – namely, 

200µg of TG. The highest release rate during the first day is related to the fact that a 

great amount of the antibiotic is adsorbed on the surface of nanoparticles, which is the 

consequence of the synthesis procedure. The zones of inhibition around the samples 

indicate that biologically active TG remains in the sample for three weeks. The 

quantification and the release mechanism of TG from implants in vivo and in vitro, 

important for potential preclinical applications, were dealt with in our previous study 

[7]. 

 

5. Conclusions 

Multifunctional nano drug delivery systems (MNDDS) based on tigecycline-loaded 

calcium phosphate/poly-DL-lactide-co-glicolide have shown good compatibility and 

antibacterial effect during the observation time and thus appear to be a suitable drug 

delivery system for the treatment of osteomyelitis caused by multidrug-resistant 



microbes. Tigecycline-loaded calcium phosphate/poly-DL-lactide-co-glycolide with 

0.6wt% of tigecycline shows a low level of the cytotoxic and LDH activity.   

This study provides additional rationale for an improved patient dosing and the 

necessity for a balance between the antibacterial and biocompatible properties of 

multifunctional local delivery systems. Tigecycline treatment at concentrations achieved 

in a conventional intravenous antibiotic therapy did not yield toxic effects or caused 

morphological changes of osteoblasts in vitro. However, at high concentrations as 

achieved by local application, tigecycline caused high toxic effect and impaired normal 

osteoblastic morphology; therefore it may be detrimental for bone healing and repair in 

vivo.  

Further in vitro studies should highlight the effects of tigecycline on the metabolic 

activity, extracellular matrix calcification and differentiation of human osteoblasts. 

Additional in vivo studies should focus on a prolonged effect of high tigecycline levels 

on bone healing and implant incorporation. 
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Figure and table caption 

 

Figure 1. Tigecycline-loaded calcium phosphate/poly-DL-lactide-co-glycolide (a) XRD 

diffraction (b) FT-IR spectra. 

Figure 2. AFM image of (a) CP/PLGA), (b) CP/PLGA/T0.6, (c) CP/PLGA/T5.0. 

Figure 3. MC3T3-E1 osteoblast-like cell cultures incubated with (a) 0, (b) 50 μg/mL, 

(c) 250 μg/mL, (d) 500 μg/mL TG in alpha-MEM medium for 72 hours, visualized by 

light microscope with original magnification ×40.  

Figure 4. Specific LDH activity after one, two and three days in the medium with cell 

line MC3T3 incubated with different concentrations of TG 0-500 μg/mL.  

Figure 5. Specific LDH activity after one, two and three days in the medium with cell 

line MC3T3 incubated with CP/PLGA, CP/PLGA/TG0.6 and CP/PLGA/TG5.0. 

Table 1. The zone of inhibition around CP/PLGA, CP/PLGA/TG0.6 and 

CP/PLGA/TG5.0 determined by the microbiological assay using S. aureus. The values 

are presented as the mean value of a triplicate. 
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Figure 1a.  
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Figure 1b.  
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Figure 4.  
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Figure 5.  

 

 

 

 

 



Table 1.  

inhibition zone 
[mm] 

incubation 
time [days] 

CP/PLGA CP/PLGA/T0.6 CP/PLGA/T5.0 

1 0 19 30 

7 0 21 30 

14 0 20 25 

21 0 19 22 

 

 

 

 

 

 

 


