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Abstract 

Thermally activated processes in cordierite-based ceramics were investigated to determine 

the effect of the mechanical activation and the addition of TeO2 on kinetic and thermodynamic 

parameters of these processes. Using a combination of dilatometry and DTA measurements in the 

100–1400 oC temperature range, it was established that both the mechanical activation and the 

addition of TeO2 have a significant effect on processes in cordierite-based ceramics. A combination 

of 5 mass % addition of TeO2 and mechanical activation for 40 minutes reduced the sintering 

temperature of cordierite ceramics to around 1100 oC. In addition, the analysis of DTA 

measurements of mechanically activated samples indicates that the mechanical activation leads to 

intensification of the cordierite formation through an increase in concentration of surface defects 

and an increase in grain contact surface in the initial powder. 

 

Keywords: Mechanical activation; DTA; sintering kinetics; cordierite; TeO2. 

 

Introduction 

 

Cordierite, with 2MgO+2Al2O3+5SiO2 composition, is a ceramic material that possesses a 

low dielectric constant (~ 5) and low thermal expansion coefficient (20·10–7 oC–1), making it useful 

in thermal shock applications, and as a carrier of electronic components as a dense ceramic material 

[1–11]. Owing to its lower processing cost and better electrical properties, cordierite represents an 

alternative to alumina in electronic applications [12].  
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On the other hand, porous cordierite and mullite ceramics have an important application as 

filters for diesel emission, molten metals, and devices where chemical durability and permeability at 

high temperatures are required [13–15]. However, cordierite exhibits a very narrow sintering 

window close to its melting point (1470 oC), necessitating the use of sintering aids and/or 

mechanical activation to reduce its sintering temperature. 

Mechanical activation and sintering aids have a significant effect on the sintering process 

[16–19]. The process of mechanical activation is beneficial for ultra fine grinding of starting 

powders prior to synthesis of various types of materials [20], and has a strong influence on physical, 

chemical, and physico-chemical properties of milled materials due to the transfer of mechanical 

energy into the powder [21]. During mechanical activation, several processes take place within the 

material: attrition of starting components, increase in overall free energy of the system, changes in 

crystal lattice, phase transformation, possible chemical reactions, and appearance of intermediate 

compounds or even final chemical products [22–24]. In addition, the sintering temperature can be 

lowered and the time needed for chemical reaction shortened. However, the nature of these 

modifications is not still well defined, mainly due to the highly specific and multiparameter nature 

of disperse systems. Additives are added to the starting powder mixtures in order to lower the 

sintering temperature, accelerate the process of obtaining the final product, and getting the product 

with targeted properties.  

There has been a broad effort to improve the solid state reaction in cordierite-based 

ceramics, reducing the sintering temperature by adding different functional additives, e.g., Bi2O3, 

yttrium-stabilized zirconia, ceria, B2O3, P2O5, 2MgO∙B2O3, TiO2, MoO3, etc. [9, 25–29], which 

managed to lower the cordierite sintering temperature to the 1200–1350 oC temperature range. In 

particular, doping with 3 wt. % of B2O3 and P2O5 has been shown to reduce the sintering 

temperature to about 1000 oC and produce a material with a low dielectric constant and low 

dissipation factor, which are favorable traits for high-frequency applications [26]. 

According to available literature data, there have been no reports on TeO2 addition to the 

cordierite mixture and its influence on the sintering temperature. Physico-chemical properties of 

TeO2 and its relatively low melting and boiling points (around 733 oC and 1245 oC, respectively) 

motivated us to investigate its potential as an additive to the cordierite mixture [30]. The position of 

the boiling point of TeO2 close to the potential sintering window of cordierite could result in a more 

porous ceramic material. Use of a single substance to achieve both a porous ceramic material and 

lower sintering temperature would significantly simplify the potential industrial production.  

In this paper, the effects of mechanical activation along with TeO2 addition on formation of 

porous ceramics, densification, and reduction of the sintering temperature of cordierite ceramics 

were analyzed using a combination of dilatometric and DTA measurements. Isoconversional Ortega 
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method was used to determine the relevant kinetic and thermodynamic parameters, allowing 

prediction of the optimal sintering conditions to obtain a material with targeted functional 

properties. 

 

Experimental procedure 

 

Mixtures of MgO, Al2O3, SiO2, and TeO2 (all 99 % p.a. Sigma–Aldrich) were used in these 

experiments. Starting powders were firstly calcined at 700 oC for 2 h in a tube furnace, in order to 

eliminate hydroxides, mainly Mg(OH)2 and Al(OH)3. The mixtures of MgO+Al2O3+SiO2 in the 

2:2:5 molar ratio, with and without the addition of 5 mass % TeO2, were mechanically activated by 

grinding in a high-energy planetary ball mill, with 400 rpm. ZrO2 vessels and balls were used with 

the powder to balls mass ratio of 1:40. The milling process was performed in air for 10 and 40 

minutes. The samples were denoted as MAS–0, MAS–10, MAS–40, MAS–Te–0, MAS–Te–10, and 

MAS–Te–40 (according to the activation time and TeO2 addition). 

The X-ray powder diffraction patterns of the starting powders and their mixtures were 

obtained using a Philips PW-1050 diffractometer with λCu-Kα radiation and a step/time scan mode 

of 0.05 deg s–1. The measurements were performed at room temperature in air atmosphere. The 

quantity content of all present samples was evaluated by HighScore (PANalytical) software. The 

morphology of the sintered samples was analyzed by the scanning electron microscopy (JEOL 

JSM-6390 LV). Prior to SEM measurements, the samples were crushed and covered with gold.   

Average particle size and particle size distribution were determined by a laser light-scattering 

particle size analyzer (PSA). The used instrument was Mastersizer 2000 (Malvern Instruments Ltd., 

UK) particle size analyzer, covering the particle size range of 0.022000 m. For the PSA 

measurements, the powders were dispersed in distilled water, in ultrasonic bath (low-intensity 

ultrasound, at a frequency of 40 kHz and power of 50 W), for 5 minutes. 

Thermal behavior of starting powders and their mixtures was determined by simultaneous 

TGDTA (Setsys, SETARAM Instrumentation, Caluire, France) in the temperature range between 

25 and 1400 C under the air flow of 20 ml min–1, in an Al2O3 pan. Experiments were done by 

heating rates of 10, 20, and 30 C min–1. Peak deconvolution and kinetic analyses were performed 

using ThermV v0.2 software package [31]. The conversion degree α is calculated for each peak as 

the ratio of the partial peak surface area at a given temperature to the surface area of the entire peak, 

providing the measure of the fraction of converted reactant at that particular point. 

The study of densification of green bodies made from different powder mixtures was 

performed via dilatometry measurements. The green bodies were formed by uniaxial pressure of 
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20 MPa (diameter of die was 16 mm) and followed by cold isostatic pressuring at 300 MPa. The 

dilatation (shrinkage) of the samples was measured on L75/Platinum (Linseis, Germany) high-

temperature dilatometer. The final sintering temperature was 1350 °C with dwell time 1 hour, and 

the heating/cooling rates were both 10 °C min–1. The measurements were performed in air 

atmosphere. The measuring piston setup was made from Al2O3 ceramics. The shrinkage was 

transformed into the density vs. time (resp. temperature) dependence according to the procedure 

described elsewhere [32] using measurement of the final apparent density of the samples according 

to Archimedes’ principle in water media (EN 623-2).  

 

Results and discussion 

 

Figure 1 shows the particle size distribution for all samples. The average particle size 

distribution for non-activated powder MAS–0 was 4.716 μm. With mechanical activation of 10 

minutes, it decreased to 4.455, while after 40 minutes, the value was 4.073 μm, indicating particle 

size reduction during milling.  

      a)  b) 

 

Figure 1 Particle size analysis for a) samples without TeO2, and b) samples with TeO2 

addition [33]. 

 

In powders with the addition of TeO2, that trend was not observed: d(0.5) slightly increased 

with increased mechanical activation, from 4.718 to 4.863, and to 5.064, for MAS–Te–0, MAS–Te–

10, and MAS–Te–40, respectively [33]. Based on these results, and trends for d(0.1) and d(0.9), we 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



5 

 

can conclude that the size of agglomerates and average particles in doped samples increased with 

the mechanical activation, while smaller particles are decreased. 

Phase composition of starting components and all investigated mixtures is presented in 

Figure 2. All diffraction lines are identified using corresponding JCPDS cards (74–1081 for α-

Al2O3, 89–6092 for β-Al2O3, 77–2364 for MgO, 71–0197 for α-SiO2, 76–0679 for α-TeO2, and 76–

0526 for MgSiO3). XRD patterns of alumina and magnesium oxide show the existence of sharp and 

intensive peaks, indicating that a crystallization process occurred during calcinations of these two 

powders (heating at 700 oC for 2 h in order to avoid hydroxides, which could further affect the 

stoichiometry). XRD pattern of SiO2 shows no clear peak intensities, but a hump, meaning that the 

SiO2 phase is in an amorphous state, while α-TeO2 is in a crystal shape (see Figure 2a).   

              a)  b) 

                c)      d) 

 

Figure 2 XRD patterns of a) initial powders, b) non-activated mixtures, c) mixtures 

activated for 10 minutes, and d) mixtures activated for 40 minutes [33]. 

 

Within the non-activated sample MAS–0, a mixture of starting oxides was detected (α-

Al2O3, MgO, and SiO2). Peaks of β-Al2O3 were not detected owing to their low intensity and 

overlapping with SiO2 peaks. The mixture MAS–Te–0 consisted of all starting powders, including 
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TeO2. The first traces of a new phase, MgSiO3, were detected within MAS–10 mixture. After 40 

minutes of activation, all phases were present along with a greater quantity of newly formed 

magnesium silicate (33.5 vol. %) [33]. Furthermore, peak intensities were lowered along with very 

slight broadening, which is characteristic for mechanically activated powders, as a result of attrition 

of particles and intensive introduction of defects into the crystal lattices during intensive and 

prolonged milling. Pattern of MAS–Te–10 possessed no MgSiO3 peaks. We assume that during 

milling TeO2 particles gathered around MgO and/or SiO2 particles and disabled them to be in a 

direct contact. Therefore, the mechanochemical reaction was omitted. After 40 minutes, magnesium 

silicate was present with 11.0 vol. % in the mixture with TeO2 addition, along with all other 

powders. Lowered intensities were present here as well, indicating a crystal lattice destruction of all 

present powders.  

Figure 3 shows the absolute density vs. time, and temperature dependence calculated from 

dilatometric data.  

        a)  b) 

 

Figure 3  Dilatometry curves presented as a) changes in absolute densities vs. time,  

and b) temperature for samples activated for 0, 10, and 40 minutes, with and without TeO2. 

 

Dilatometry showed that the density increased with milling. Also, the dilatometric data 

confirmed that TeO2 doping leads to formation of more porous ceramics. Further, it was observed 

that sintering occurs at lower temperatures (between 1000 and 1200 oC, depending on the sample), 

due to the lower melting point of TeO2, according to dilatometric data. The effect of mechanical 

activation was visible on green densities. The mechanically activated samples started with a similar 

green density (higher than 1.7 g cm–3, mixtures with similar pressing characteristics). Non-activated 

samples (MAS–0, and MAS–Te–0) started with the green density significantly lower than the 

activated samples (bellow 1.6 g cm–3, see the left end in Figure 1). It is a common behavior for 

mechanically activated powders, to achieve higher green density when compacted [34]. A phase 
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transition was observed in the temperature range 800–900 °C in the case of samples with higher 

cordierite phase content (samples activated for 40 minutes – green lines), which was accompanied 

by an increase in sample density. On the other hand, a decrease in the density of mechanically 

activated samples was observed between 1100 and 1350 °C, most likely caused by the ongoing 

solid state reaction, which significantly slowed down soon after the dwell time started. We assume 

that a dwell time extension would not lead to the completion of the solid state reaction without an 

additional change in external conditions (increased temperature, application of an isostatic pressure, 

etc.). The dilatometric analysis of sintering showed that the lowest sintering/reaction temperature 

was exhibited by the sample activated for 40 minutes, with addition of TeO2 (after 85 minutes 

heating, around 1100 oC), with generally significantly higher impact of the mechanical activation on 

the sintering temperature than for samples without TeO2. 

 

           Table 1 Green and absolute densities, and relative open porosities of sintered samples. 

Sample Green densities 

(g cm–3) 

Absolute densities 

(g cm–3) 

Relative open 

porosity (%) 

MAS-0 1.55 2.10 21.9 

MAS-10 1.79 1.99 25.4 

MAS-40 1.73 2.34 9.9 

MAS-Te-0 1.51 1.86 30.5 

MAS-Te-10 1.72 1.96 26.2 

MAS-Te-40 1.77 2.17 16.8 

 

The highest density (2.34 g cm–3) after sintering was reached in the case of the sample 

MAS–40 (see Table 1). In milled samples, particles were smaller, with larger specific surface areas, 

which were also more active due to the increased number of defects, caused by milling. Therefore, 

the diffusion processes were made easier, leading to higher reactivity and more compact samples. 

All three samples doped by TeO2 exhibit consistently lower densities than the un-doped samples. 

Having in mind that the boiling point of TeO2 is around 1245 oC [30], lower than the sintering 

temperature, it is most likely that during the sintering process, evaporated TeO2 formed bubbles, 

creating small pores within samples, which remained inside the samples after cooling. 

The XRD analyses were performed on sintered samples, and the Rietveld method was used 

for determining the phase composition quantity. All diffraction lines were identified using 

corresponding JCPDS cards (75–1439 for Mg2Al4Si5O18, 76–0941 for -SiO2, 89–1625 for 

Mg2SiO4, 81–2267 for α-Al2O3, and 83–0679 for ZrSiO4). The phase composition of all sintered 
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samples, presented in Table 2, showed multiphase patterns with the primary Mg2Al4Si5O18 phase 

accounting for approx. 56 to 81 vol. %, which increased with increased mechanical activation of the 

powder mixture. 

 

Table 2 Phase composition of sintered samples, obtained by XRD measurements, in vol. %. 

Sample Mg2Al4Si5O18 Al2O3 SiO2 MgAl2O4 ZrSiO4 

MAS-0 57.0 7.0 9.2 26.9 – 

MAS-10 62.3 3.9 7.0 25.3 1.5 

MAS-40 80.6 – 1.1 16.0 2.3 

MAS-Te-0 57.2 9.0 7.7 26.1 – 

MAS-Te-10 55.7 3.9 11.5 27.6 1.3 

MAS-Te-40 78.2 – 1.2 19.0 1.6 

 

Phases of Al2O3, SiO2, MgAl2O4, and ZrSiO4 were observed as secondary phases. These 

phases are either remains from the initial mixture or intermediate products of the incomplete solid 

state reaction. The presence of the ZrSiO4 phase is probably caused by pollution from high energy 

milling (zirconia milling elements). The absence of Te-containing phases is probably caused either 

by evaporation of TeO2 up to 1350 oC, or incorporation into the cordierite or magnesium silicate 

crystal lattice. Due to its empirical atomic radius of 140 pm, an atom of Te can replace an atom of 

magnesium, whose atomic radius is 150 pm; it cannot replace silicon or aluminum atoms because 

their radii are smaller, 110 and 125 pm, respectively [30]. If the solid solution were really formed, it 

would be manifested by slight shifting of peak intensities either to the left or right side in the 

diagram. However, changes in crystal lattice were not detected in the XRD patterns, so this 

statement remains only as an assumption. Furthermore, if XRD patterns showed no existence of Te, 

that doesn’t mean there is no Te in the mixture (maybe a part is incorporated in the crystal lattice 

but the shift of peaks wasn’t visible, and on the other hand, the limit of XRD measurement is 

around 3 mas. %). Figure 4 shows XRD patterns of all sintered samples. All peaks are very 

intensive and sharp, indicating crystallization during the sintering process. 
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    a)     b) 

c) 

 

Figure 4 XRD patterns of sintered a) non-activated mixtures, b) mixtures activated for 10 

minutes, and c) mixtures activated for 40 minutes. 

 

Scanning electron micrographs of all sintered samples are presented in Figure 5. Sintered 

non-activated samples possess a non-homogeneous microstructure with sintered parts originating 

from sintering of agglomerates and particles on the other side, along with open porosity. With the 

10 minutes milling time prior to sintering, a more homogeneous microstructure is obtained, 

although the porosity is still present. The micrograph presented in Figure 5e) shows no visible 

porosity, the sintered MAS–40 sample has the most homogeneous microstructure, and it is very 

dense as well, in agreement with measured densities (see Table 1). The micrograph presented in 

Figure 5f) indicates very small closed pores probably originated from melted TeO2 phase. 
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                  a)     b) 

                  c)     d) 

                  e)     f) 

 

Figure 5 SEM micrographs of all sintered samples: a) MAS–0, b) MAS–Te–0, c) MAS–10,  

d) MAS–Te–10, e) MAS–40, and f) MAS–Te–40. 

 

Thermally activated processes in both MAS and MAS–Te samples were further investigated 

using DTA measurements. All curves possess an endothermic peak around 100 oC, belonging to 

humidity evaporation. The temperature region around 570 oC corresponds to the structural α → β 

phase transition in SiO2 (see Figure 6d) 35, where its position depends on the mechanical 

activation of the sample, as presented in Figure 6a). According to literature data, at normal pressure, 

trigonal quartz (α-quartz) will transform into hexagonal β-quartz at 573 °C, upon further heating 

SiO2 will transform into hexagonal β-tridymite at 870 °C, and later to cubic β-cristobalite at 

1470 °C. At 1705 °C β-cristobalite finally melts [36]. However, tridymite usually does not form 

from pure β-quartz; one needs to add trace amounts of certain compounds to achieve this. So the β-

quartz-tridymite transition is skipped and the sequence looks like this: 
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573 oC               1050 oC                      1705 oC 

α-Quartz  β-Quartz  β-Cristobalite  Silica Melt. 

                      trigonal            hexagonal                  cubic 

                               2.65 g cm–3              2.53 g cm–3                  2.20 g cm–3 

 

DTA measurements in the 1100–1400 oC temperature region show that MAS samples 

exhibit an endothermic peak followed by an exothermic peak and another endothermic peak, which 

can be attributed to the overlapping processes of chemical reaction of Mg2Al4Si5O18 phase 

formation and crystallization [37]. The temperature of cordierite formation is shifted towards higher 

temperatures with the increased heating rates, as shown in Figure 6c). Overall average activation 

energies of the first endothermic and the exothermic peak, calculated using Kissinger method [38], 

show that the mechanical activation has a significant effect, decreasing the activation energies to 

1300–1100 kJ mol−1.  

              a)      b) 

             c) d) 

 

Figure 6 DTA curves of a) MAS samples, b) MAS-Te samples with different mechanical  

activation times, c) MAS-0 with different heating rates, and d) SiO2 powder. 
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A previous study of mechanically activated powders with addition of MoO3 produced values 

of the overall average activation energy in the same range [37], showing that the mechanical 

activation has a significant effect, decreasing the activation energy for the first process from 338 to 

215 kJ mol−1, and for the second one from 212 to 70 kJ mol−1, correlated with the increase in 

powder reactivity. This can be attributed to the fact that the mechanical activation leads to reduction 

of particle size, it increases the contact surface between the particles, but also causes an increase in 

reactivity through introduction of surface defects. This also means that, in mechanically activated 

samples, there are a larger number of atoms simultaneously participating in processes of sintering 

and chemical reaction. Increase in reactivity due to the mechanical activation is also indicated by a 

shift of all processes to lower temperatures with increase in mechanical activation time, and the 

appearance of additional processes in the 1100–1200 oC region in MAS sample activated for 

40 minutes, not observed in non-activated sample, which most likely represent the onset of 

Mg2Al4Si5O18 formation. This is consistent with the results of dilatometric measurements (Figure 3) 

and can also be correlated with significantly higher content of Mg2Al4Si5O18 phase in MAS–40 

sample due to prolongation of the chemical reaction by this shift of the reaction onset to the 1100–

1200 oC temperature region. 

a) b) 

 

Figure 7 Values of effective apparent activation energy for a) deconvoluted endothermic peak,  

and b) complex exothermic peak. 

 

Figure 7 shows the values of the effective apparent activation energy for the deconvoluted 

endothermic peak and the complex exothermic peak, whose deconvolution was not feasible. The 

endothermic peak of the non-activated sample was deconvoluted into two single-step processes, 

which can be attributed to crystallization and formation of Mg2Al4Si5O18 phase. Although the 

mechanical activation increases the complexity of the overall peak, single-step processes 

corresponding to those observed in non-activated samples were successfully identified on 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



13 

 

deconvolution and Figure 7 shows values of effective apparent activation energy of these processes 

in samples with different times of mechanical activation determined using Ortega method [40]. The 

process corresponding to peak 1 occurs at lower temperature, exhibits lower values of apparent 

activation energy, and can be attributed to the formation of Mg2Al4Si5O18 phase. The mechanical 

activation has a significant effect on this process. However, the difference between the two 

mechanically activated samples is considerably larger than between them and the non-activated 

sample, indicating that the prolonged mechanical activation has a significant effect on the process 

of Mg2Al4Si5O18 phase formation. This can be explained by the fact that the mechanical activation 

introduces surface defects in the precursor nanoparticles, which act as reaction sites for the 

formation of Mg2Al4Si5O18 phase. Prolonged mechanical activation creates both more nucleation 

sites and, due to decreased particle size, sites with higher surface energy, making the formation of 

Mg2Al4Si5O18 phase both easier, which is manifested through decrease in activation energy, and 

faster, which is manifested through significantly higher phase content of Mg2Al4Si5O18 phase in 

samples activated for 40 minutes (Table 2).  

 Peak 2 can be attributed to the sintering of the powder, and the decrease in apparent 

activation energy of this process is more continuous, which can be correlated with a relatively 

continuous decrease in particle size with prolonged mechanical activation of MAS samples (see 

Figure 1). This increases the contact surface between the particles, leading to a larger mass transport 

and easier sintering process.  

 

Conclusions 

 

Thermal analysis, using both dilatometric and DTA measurements, has shown that the onset 

of cordierite formation and sintering shifts towards lower temperatures by increase in mechanical 

activation time. In addition, dilatometry also shows that addition of TeO2 to the sample causes an 

additional shift towards lower temperatures, where these processes begin to occur as low as 

1100 oC. This indicates that the combination of additives and mechanical activation of the sample 

produces a synergistic effect to reduce the sintering temperature of cordierite and suggests that their 

use in concert should prove to be a more efficient method to reduce the sintering temperature of 

cordierite-based ceramics. The decreased values of effective apparent activation energy for 

deconvoluted endothermic peak of mechanically activated cordierite samples indicate that the 

mechanical activation leads to intensification of these processes, although the effects of prolonged 

mechanical activation are different for the sintering process than for the cordierite formation. This 

can be explained by different nature of these processes: cordierite formation, as a chemical reaction, 

is helped primarily by the increased concentration of surface defects and an increase in surface 
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energy of these defect sites, while intensification of the sintering process is driven by the decrease 

in grain size and the resulting increase in contact surface between them. Therefore, the effects of 

mechanical activation on formation of Mg2Al4Si5O18 phase become much more apparent after a 

longer period of mechanical activation, 40 minutes. Samples doped with TeO2 show higher porosity 

indicating that addition of TeO2 leads to obtaining a porous ceramic. Having in mind the growing 

needs for developing filters for diesel emission, filters for molten metals, etc., this method of using 

TeO2 as additive, and as pore forming agent simultaneously, could be a very interesting processing 

technique for preparation of cordierite-based porous filters.  
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