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Abstract  20 

Choline chloride (ChCl)-based deep eutectic solvents (DESs) with different amides or polyols 21 

as hydrogen bond donors were tested as cosolvents in the ethanolysis of expired sunflower oil 22 

catalyzed by either calcined or non-calcined CaO. These cosolvents promoted the ethanolysis 23 

by a successful activation of non-calcined CaO, which was ascribed to the CaCO3 and 24 

Ca(OH)2 dissolution from the surface of the solid catalyst particles. With both calcined and 25 

non-calcined CaO, the polyol-based solvents gave higher fatty acid ethyl esters (FAEE) 26 

content than the amide-based solvents. Among the amide-based DESs, choline chloride:urea 27 

(ChCl:U) was the most efficient activator of non-calcined CaO. Choline chloride:ethylene 28 

glycol (ChCl:EG) and choline chloride:propylene glycol (ChCl:PG) were more efficient than 29 

choline chloride:glycerol (ChCl:G) even with non-calcined CaO. However, ChCl:G might be 30 

more suitable than the others since the use of glycerol, a by-product of the ethanolysis, could 31 

reduce the overall biodiesel production costs. FTIR and XRD analyses of the used and 32 

separated CaO were performed in order to get more insight into the catalytically active 33 

phase(s). Also, the mechanisms of the CaO activation in the presence of the DESs were 34 

considered. The phase separation of the reaction mixture was faster in the presence of the 35 

DESs. Since ChCl:U and ChCl:G DESs are nontoxic, biodegradable, biorenewable and 36 

„green“ solvents and provide the elimination of the calcination step of CaO, thus reducing the 37 

overall process costs, the non-calcined CaO catalytic systems with these DESs are 38 

recommended for further optimization. 39 

Keywords: calcium oxide; choline chloride; cosolvent; deep eutectic solvent; ethanolysis 40 

41 
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1. Introduction 42 

Biodiesel represents a promising alternative energy source to petro-diesel because of its 43 

biodegradability, lower toxicity, CO2 and sulfur emission, the possibility of being used as a 44 

fuel alone or mixed with diesel, etc. Most commonly, it is produced by transesterification 45 

(alcoholysis) of vegetable oils or animal fats with methanol or ethanol in the presence of 46 

homogeneous catalysts. The growing demand for biodiesel requires improving its 47 

manufacturing process through the use of large production capacity, new catalytic systems, 48 

non-edible vegetable oils as feedstocks and simplified process operations. Heterogeneous 49 

(solid) catalysts used in biodiesel production provide number of benefits, compared to 50 

homogeneous catalysts, like simpler and cheaper catalyst separation and product purification. 51 

Also, the heterogeneous catalyst can be used repeatedly, thus lowering the operating costs. In 52 

addition, they have low corrosion risk and low environmental threats. Besides their benefits, 53 

solid catalysts have some drawbacks, such as lower reaction rate, possible deactivation and 54 

leaching. CaO possesses many desirable properties of heterogeneous catalysts for the 55 

production of biodiesel, such as tolerance to moisture and free fatty acids present in the low-56 

quality feedstocks, low solubility in alcohols, low cost, noncorrosivness, environmentally-57 

friendly nature, production from waste and natural materials and reusability [1,2]. However, 58 

when exposed to the air, CaO adsorbs CO2 and water, forming CaCO3 and Ca(OH)2 at the 59 

surface of catalyst particles, which inhibit its catalytic activity [3]. Therefore, CaO should be 60 

activated by calcination at a high temperature [1] or by washing with methanol [4], glycerol 61 

[5], biodiesel [6], or biodiesel containing small amounts of acylglycerols and methanol [7]. 62 

Glycerol washing is more efficient in CaO activation than calcination or methanol washing 63 

[8]. 64 

In the last decade, ethanol has frequently been explored as the acyl acceptor in the biodiesel 65 

production [9-11]. Compared to methanol, ethanol is less toxic, has higher dissolving power 66 
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in vegetable oils and can be produced from agricultural renewable resources. Moreover, fatty 67 

acid ethyl esters (FAEEs) have higher heat capacity and cetane number, higher oxidative 68 

stability, lower iodine value, better lubricity properties, lower cloud point and pour point than 69 

fatty acid methyl esters (FAMEs) [9,11]. Furthermore, the environmental advantages of 70 

FAEEs, compared to FAMEs, are less exhaust gas emissions [11] and higher biodegradability 71 

in water [9]. An additional advantage of ethanolysis is a higher esters yield [9]. However, 72 

ethanol is more expensive than methanol, has lower transesterification reactivity caused by 73 

steric hindrance of the longer carbon chain, and forms an azeotrope with water, making its 74 

separation more difficult. Besides that, the ethanolysis demands more energy, FAEEs yield 75 

depends significantly on the presence of water in the reaction mixture, and more stable 76 

emulsions are formed. Also, viscosity and the acid value of FAEEs are higher than those of 77 

FAMEs [11]. 78 

Since oil and alcohol are immiscible, the biodiesel production system consists of at least two 79 

phases. Different organic solvents, added as cosolvents to a transesterification reaction 80 

system, increase miscibility of the reactants, thus providing a pseudo-homogeneous reaction 81 

system [12]. Their use is recommended for the reaction performed at a lower temperature 82 

when the mass transfer limits the chemical reaction [13]. The added cosolvent should be inert 83 

to the reactants, the products, and the catalyst. Besides organic solvents, ionic liquids (ILs) 84 

and deep eutectic solvents (DES) can be used in biodiesel production as cosolvents and 85 

catalysts [14]. While ILs are organic salts that contain only ions, DESs are generally prepared 86 

by combining two classes of compounds, namely hydrogen bond acceptors (HBAs) and 87 

hydrogen bond donors (HBDs), in different molar ratios. The resulting DES has lower 88 

melting point because of hydrogen bonding [14]. Most commonly used HBAs are substituted 89 

quaternary ammonium salts, such as choline chloride (ChCl) [15]. HBDs are usually different 90 

organic compounds, such as organic acids, polyols, amides, sugars etc. In comparison with 91 

the conventional ILs, DESs are cheaper, less toxic, biodegradable, and easy to be prepared 92 
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from available and inexpensive precursors. Additional beneficial properties of DESs are wide 93 

liquid range, low vapor pressure, non-flammability, and compatibility with water. These 94 

properties make DESs useful in biodiesel production and purification as catalysts and 95 

solvents, respectively [14]. 96 

ChCl-based DESs have mostly been applied in homogeneously-catalyzed methanolysis and 97 

ethanolysis [16-19], while their use in heterogeneously-catalyzed transesterification reactions 98 

is rare [20]. The addition of the ChCl:glycerol (ChCl:G) DES (molar ratio 1:2) as a cosolvent 99 

to the homogeneously-catalyzed rapeseed oil methanolysis system favors the production of 100 

methoxide ions by the higher effective dissolution of the base catalyst (NaOH) in the 101 

DES/methanol mixture [16]. Also, this DES reduces the soap formation in the 102 

homogeneously-catalyzed ethanolysis of palm oil [17,18], thus making the separation and 103 

purification stages easier. The same result was observed with ChCl:ethylene glycol 104 

(ChCl:EG) [19]. Heterogeneous ethanolysis of vegetable oils in the presence of a DES used as 105 

a cosolvent has not been studied so far. However, ChCl:G DES activates CaO in the 106 

methanolysis of rapeseed oil, thus eliminating calcination, and makes its separation from the 107 

reaction mixture faster [20].  108 

The present study investigates the effects of different ChCl-based DESs on the expired 109 

sunflower oil ethanolysis over non-calcined and calcined CaO. These DESs were prepared 110 

from ChCl and the selected HBDs, such as amides (urea, 1,3-dimethylurea and thiourea) and 111 

polyols (propylene glycol, ethylene glycol and glycerol). For comparison, the CaO-catalyzed 112 

reactions were also carried out in the presence of ChCl and individual HBDs, while the 113 

control reactions were performed in the presence of only non-calcined or calcined CaO, 114 

CaCO3 or Ca(OH)2. Besides that, the reusability of non-calcined CaO catalyst activated by the 115 

prepared DESs and the ChCl:G DES coupled with either recovered or fresh CaO, as well as 116 

the separation of the phases at the end of the reaction were investigated. After the optimal 2 h 117 

reaction time, the used separated CaO was analyzed by FTIR and XRD in order to get a better 118 
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understanding of the catalytically active phase(s). The mechanisms of the CaO activation in 119 

the presence of the DESs were also considered. The main goal was to compare the catalytic 120 

activities of non-calcined and calcined CaO in the absence and the presence of the prepared 121 

DESs used as cosolvents and CaO activators. To the best of authors’ knowledge, ChCl:1,3-122 

dimethylurea (ChCl:DMU) and ChCl:propylene glycol (ChCl:PG) DESs have not been used 123 

yet in transesterification reactions, while ChCl:urea (ChCl:U), ChCl:DMU, ChCl:thiourea 124 

(ChCl:TU) and ChCl:PG DESs (all in the molar ratio of 1:2) have not been applied in the 125 

ethanolysis of sunflower oil. 126 

2. Materials and methods 127 

2.1 Materials 128 

Expired commercial sunflower oil (Dijamant, Zrenjanin, Serbia) was provided from a local 129 

shopping store. The acid, saponification, iodine and peroxide values of the oil, determined 130 

according to the AOCS official methods [21], were 0.64 mg KOH/g, 191 mg KOH/g, 126 g 131 

I2/100 g and 7.25-11.97 mEq/kg, respectively. Density of 907.1 kg/m
3
 was determined 132 

picnometrically at 25 °C. Dynamic viscosity, determined by a rotational viscometer (Visco 133 

Basic Plus v. 0.8, Fungilab S.A., Barcelona, Spain) at 25 °C was 72.70 mPas. Its fatty acid 134 

composition is as follows: C-16:0 (5.41±0.08%), C-18:0 (3.19±0.04%), C-18:1 135 

(25.23±0.47%), C-18:2 (63.07±0.37%), C-22:0 (1.31±0.13%), C-22:1 (0.55±0.03%) and C-24 136 

(0.52±0.06%), i.e. saturated (10.77±0.04%), mono-unsaturated (25.93±0.58%) and poly-137 

unsaturated (63.21±0.39%) fatty acids. Absolute ethanol (99.5%) was provided by Lachema 138 

(Neratovice, Czech Republic). Choline chloride (≥ 98.0%), 1,3-dimethylurea (≥ 98.0%), 139 

ethylene glycol (≥ 99.0%), CaO (≥ 99.0%) CaCO3 (≥ 99.0%) and Ca(OH)2 (≥ 99.0%) were 140 

provided by Sigma Aldrich (St. Louis, USA). Urea and thiourea (both 99.5%) were purchased 141 

from Zorka-Pharma (Šabac, Serbia) while propylene glycol and glycerol (both Ph Eur grade) 142 

were from MeiLab (Belgrade, Serbia). Also, the following solvents were used: ethyl acetate 143 
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(99.5%, Merck Millipore, Darmstadt, Germany), n-hexane (99%, HPLC grade, LGC 144 

Promochem, Wesel, Germany) and HPLC grade, JT Baker, Center Valley, Pennsylvania), 145 

glacial acetic acid (Zorka-Pharma, Šabac, Serbia) and 2-propanol (HPLC grade, JT Baker, 146 

Center Valley, Pennsylvania), and methanol (HPLC grade, LGC Promochem, Wesel, 147 

Germany). NaOH pellets (98.0%) and HCl (36 wt.%) were from Sigma Aldrich and 148 

Centrohem (Stara Pazova, Serbia), respectively. A standard mixture of ethyl esters of 149 

palmitic, stearic, oleic, linolenic and linoleic acids (20.0% of each ester), triolein, diolein and 150 

monoolein were purchased from Sigma Aldrich (St. Louis, USA). 151 

2.2 Preparation of deep eutectic solvents 152 

ChCl was mixed with an HBD (urea, 1,3-dimethylurea, thiourea, propylene glycol, ethylene 153 

glycol or glycerol) at the 1:2 molar ratio in a round-bottomed flask, as described elsewhere 154 

[22]. The prepared DESs were stored in well-closed glass bottles in a desiccator containing 155 

CaCl2. The physical and thermodynamic properties of the DESs can be found elsewhere [22]. 156 

2.3 Ethanolysis: equipment, reaction conditions and procedure 157 

The ethanolysis reaction was conducted in a batch reactor at atmospheric pressure. The 158 

reactor (250 mL two-neck round-bottomed flask) was equipped with a magnetic stirrer (600 159 

rpm) and a condenser. It was placed in a glass chamber kept at the constant temperature of 160 

70±0.5 °C by circulating water from a water bath by a pump. Two series of experiments were 161 

conducted, namely with non-calcined and calcined CaO. First, CaO from a commercial 162 

package was calcined at 550 °C for 2 h, as recommended elsewhere [23]; the activated CaO 163 

was cooled and kept until the use in a well closed, glass bottle in a desiccator containing 164 

CaCl2 and KOH. Also, non-calcined CaO was used directly from the same commercial 165 

package, without any pretreatment. Additionally, CaCO3 and Ca(OH)2, taken directly from 166 

the commercial packages, were used to evaluate their catalytic effect on the reaction in the 167 

absence of the cosolvent or CaO. For all experiments, ethanol, the catalyst and the cosolvent 168 
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(DES or their individual components when used) in amounts of 14.38, 3.80 and 4.60 g, 169 

respectively were added to the reactor. The ethanol-to-oil molar ratio was 12:1, as suggested 170 

elsewhere [10,24,25]. The amount of the cosolvent was 20% of the mass oil in all 171 

experiments, as recommended elsewhere [12]. This suspension was stirred for 30 min. After 172 

turning off the magnetic stirrer, the oil (22.98 g), previously preheated at 70 °C in a stirred 173 

glass beaker, was added to the reaction flask. Then, the magnetic stirrer was switched on and 174 

the reaction was timed. During the reaction, samples were taken from the reaction mixture, 175 

immediately quenched by adding a required amount of the aqueous 5 M HCl solution to 176 

neutralize the catalyst and centrifuged (Sigma 2-6E, Germany; 3500 rpm, 10 min). The upper 177 

layer (ester/oil fraction) was withdrawn, dissolved in the 2-propanol/n-hexane (5:4 v/v) 178 

mixture in an appropriate ratio (1:10 or 1:200 for qualitative TLC or quantitative HPLC 179 

analysis, respectively), and filtered through a 0.45 μm Millipore filter. The resulting filtrate 180 

was used for thin layer (TLC) and liquid chromatography (HPLC) analyses. All experiments 181 

were run in duplicate. 182 

2.4 Separation of FAEEs 183 

After the reaction was completed, the reaction mixture was poured into a separatory funnel 184 

and allowed to settle at the room temperature. Three layers were formed during the separation 185 

stage. The top layer consisted mostly of FAEEs and smaller amounts of triacylglycerols 186 

(TAGs), diacylglycerols (DAGs), monoacylglycerols (MAG) and CaO, the middle layer 187 

contained a mixture of excess ethanol, glycerol and the used cosolvent (DES, ChCl or 188 

individual HBDs), and the bottom layer was the precipitated CaO. 189 

2.5 Reusability of the non-calcined CaO catalyst activated by different DESs 190 

The CaO catalyst was separated from the reaction mixture with different DESs after 2 h by 191 

centrifugation and used without any treatment (no addition of DES, washing and 192 

recalcination) in the next five batches under the same reaction conditions. 193 
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2.6 Reusability of the ChCl:G DES with recovered or fresh CaO 194 

The ChCl:G DES was recovered from the reaction mixture after the 2 h reactions catalyzed 195 

with the recovered or fresh CaO. The reaction mixture was first centrifuged at the room 196 

temperature, and the upper and middle layers were separated from the CaO precipitate by 197 

decantation. The middle layer was first evaporated to remove excess ethanol and then dried at 198 

110 °C until constant weight; hence, the resulting product contained mainly the ChCl:G DES 199 

and glycerol extracted by the DES (here called the recovered ChCl:G DES/glycerol product). 200 

To test the reusability of the ChCl:G DES coupled with either recovered or fresh CaO, three 201 

series of experiments were conducted following the above-described procedure (Section 2.3) 202 

using: (1) the recovered ChCl:G DES/glycerol product and the recovered CaO; (2) the 203 

recovered ChCl:G DES/glycerol product and fresh CaO; and (3) the treated recovered ChCl:G 204 

DES/glycerol product and fresh CaO. For the third series, the recovered ChCl:G DES/glycerol 205 

product was treated with an appropriate amount of ChCl for 1 h at 70 °C to prepare the 206 

ChCl:G DES in the 1:2 molar ratio. 207 

2.7 Analytical methods 208 

2.7.1 FAEE content determination 209 

The chemical composition of each sample of the reaction mixture was first estimated 210 

qualitatively by TLC and then quantitatively by the HPLC method described elsewhere [25]. 211 

The TAG conversion degree, xA, was calculated from the percentage of TAGs in the ester/oil 212 

fraction of the reaction mixture at the beginning, cA0, and after a certain time, cA, of the 213 

reaction: 214 

0

1 A

A

A

c
x

c
        (1) 215 

The calibration curves, prepared by using the standard mixture of FAEEs and the standard 216 

TAGs, as described elsewhere [24], were used for the quantification of FAEEs and TAGs. 217 
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The contents of TAGs, DAGs, MAGs and FAEEs were calculated from the corresponding 218 

peak areas using the calibration curves. 219 

2.7.2 FTIR analysis  220 

The FTIR spectra of the catalysts were recorded at the room temperature by a Michaelson 221 

Bomen MB-series spectrophotometer, using the KBr pellet (1.5 mg/150 mg) technique, in the 222 

range of 4000–400 cm
–1

 and with the 2 cm
–1

 resolution. The mixture of a catalyst and KBr 223 

was vacuumed and pressed (200 MPa) in order to form a thin, permeable pastille.  224 

2.7.3 XRD analysis 225 

The X-ray powder diffraction measurements were performed by a Philips PW 1050 X-ray 226 

powder diffractometer using Ni-filtered Cu Kα1,2 (λ = 1.54178 Å) radiation and the Bragg–227 

Brentano focusing geometry. Measurements were done at room temperature over the 2θ range 228 

of 7–70° with a scanning step width of 0.05° and a counting time of 3 s per step. 229 

2.7.4 Solubility of CaCO3 and Ca(OH)2 in deep eutectic solvents  230 

The solubility of CaCO3 and Ca(OH)2 in DESs was determined by the acid-base (HCl/NaOH) 231 

titration [20]. The saturated solutions of CaCO3 and Ca(OH)2 in the DESs were prepared. 232 

Then, 2 mL of HCl (0.01 mol·dm
-3

) were added into 4 mL of the saturated solution of CaCO3 233 

or Ca(OH)2. NaOH (0.015 mol·dm
-3

) was used to neutralize excess HCl. The measured 234 

solubility of CaCO3 and Ca(OH)2 in the DESs at 70 °C are given in Table 1. 235 

236 
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Table 1 Solubility (in wt %) of CaCO3 and Ca(OH)2 in the DESs at 70 °C.
a
  237 

DES CaCO3 Ca(OH)2 

ChCl:U 0.44±0.11 8.03±0.07 

ChCl:TU  0.34±0.08 4.67±0.09 

ChCl:DMU  0.16±0.05 3.85±0.13 

ChCl:PG  0.90±0.13 0.30±0.09 

ChCl:EG  0.47±0.10 1.84±0.12 

ChCl:G 0.89±0.09 2.09±0.06 

a
 Mean of three measurements ± standard deviation. 238 

3. Results and discussion 239 

3.1 Ethanolysis of expired sunflower oil  240 

3.1.1 Catalytic activity of CaO, Ca(OH)2 and CaCO3  241 

Both non-calcined and calcined CaO, CaCO3 and Ca(OH)2 were tested as catalysts in the 242 

ethanolysis of expired sunflower oil in the absence of any DESs, HBDs or ChCl. Both types 243 

of CaO and Ca(OH)2 showed the observable catalytic activity of different intensity while 244 

CaCO3 had no catalytic activity (Fig. S.1, Supplementary material). Due to an increased 245 

number of available active centers on the surface of catalyst particles, calcined CaO was more 246 

active than non-calcined CaO. The sigmoidal dependence of FAEE content on time could be 247 

attributed to the mass transfer limitation at the beginning of the reaction, as it was observed 248 

for CaO-catalyzed methanolysis [4,8,23] and ethanolysis [10,26] reactions. The FAEE content 249 

increased slowly during the initial stage of the reaction on account of slow TAG conversion. 250 

The FAEE content of 48.9±1.4% was obtained in 3 h using calcined CaO, which was four 251 

times higher than that in the reaction catalyzed by non-calcined CaO. Higher FAEE content 252 

(97.8±2.1%) was achieved with calcined CaO in 5 h than with non-calcined CaO 253 
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(84.5±1.4%). These results were similar to those reported for the CaO-catalyzed ethanolysis 254 

reactions [10,26]. Ca(OH)2 was much less active than CaO, which agreed with the previous 255 

studies on the Ca(OH)2-catalyzed ethanolysis [26,27], because of its less basicity [28]. While 256 

Gryglewicz [29] reported no catalytic activity of Ca(OH)2 in the methanolysis of rapeseed oil, 257 

several other studies demonstrated its catalytic activity in the transesterification reactions 258 

[3,8,30-32]. No catalytic activity of CaCO3 has already been reported [8,20,30]. As a 259 

conclusion, CaCO3 and Ca(OH)2 layers formed on the surfaces of CaO particles will reduce 260 

its catalytic activity [3,20]. 261 

3.1.2 Catalytic activity of choline chloride, hydrogen bond donors and DESs in the absence of 262 

CaO 263 

The ethanolysis of expired sunflower oil was conducted in the presence of ChCl, the HBDs 264 

(urea, 1,3-dimethylurea, thiourea, propylene glycol, ethylene glycol or glycerol) or the DESs 265 

(ChCl:U, ChCl:DMU, ChCl:TU, ChCl:PG, ChCl:EG and ChCl:G) and in the absence of CaO. 266 

No reaction between the oil and ethanol indicated that the tested compounds had no catalytic 267 

activity.  268 

3.1.3 Catalytic activity of CaO in the presence of amide-based hydrogen bond donors and 269 

DESs 270 

The variations of FAEE content with the progress of the CaO-catalyzed ethanolysis of expired 271 

sunflower oil in the presence of ChCl, the amide-based HBDs (urea, 1,3-dimethylurea and 272 

thiourea) and the amide-based DESs (ChCl:U, ChCl:DMU and ChCl:TU) are shown in Fig. 1.  273 
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 274 

Fig. 1. The variations of the FAEE content with the progress of expired sunflower oils 275 

ethanolysis catalyzed by calcined (black symbols) or non-calcined (open symbols) CaO with 276 

no addition of HBDs or DESs (rhomb) and with addition of ChCl (circle) (a-c), urea (left 277 

triangle), ChCl:U (square) (a), 1,3-dimethylurea (right triangle), ChCl:DMU (down triangle) 278 

(b), thiourea (up triangle) and ChCl:TU (star) (c). 279 
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The presence of ChCl significantly accelerated the reaction over calcined or non-calcined 280 

CaO but calcined CaO was more active. The addition of urea, 1,3-dimethylurea or thiourea 281 

also accelerated the reaction over both non-calcined and calcined CaO and calcined CaO 282 

systems provided a faster reaction and a higher final FAEE content compared to the 283 

corresponding non-calcined CaO systems. Among the amide-based HBDs, the 1,3-284 

dimethylurea/calcined CaO system was the most effective. The amide-based DESs gave even 285 

better results than the amides or ChCl, the results being better in combination with calcined 286 

CaO than with non-calcined CaO. The efficiency of the amide-based DESs with both calcined 287 

and non-calcined CaO decreased in the following order: ChCl:U > ChCl:DMU > ChCl:TU. 288 

Since all of them could remove CaCO3 and Ca(OH)2 from the surface of catalyst particles, 289 

thus increasing catalytic activity of CaO (Table 1), the differences in their efficiency might be 290 

attributed to their different viscosity, which decreased in the same order (Fig. S.2, 291 

Supplementary material) [22,33]. Among these DESs, only ChCl:U is liquid at room 292 

temperature, while others are solids, so despite heating and mixing with ethanol under 293 

stirring, the ChCl:DMU and ChCl:TU DESs have a strong effect on the mass transfer. 294 

3.1.4 Catalytic activity of CaO with polyol-based hydrogen bond donors and DESs 295 

The variations of the FAEE content with the progress of expired sunflower oil ethanolysis in 296 

the presence of ChCl, the polyol-based HBDs (propylene glycol, ethylene glycol and 297 

glycerol) and the polyol-based DESs (ChCl:PG, ChCl:EG and ChCl:G) are shown in Fig. 2.  298 
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 299 

Fig. 2. The variations of the FAEE content with the progress of expired sunflower oils 300 

ethanolysis catalyzed by calcined (black symbols) or non-calcined (open symbols) CaO with 301 

no addition of HBDs or DESs (rhomb) and with addition of ChCl (circle) (a-c), ethylene 302 

glycol (left triangle), ChCl:EG (square) (a), propylene glycol (right triangle), ChCl:PG (down 303 

triangle) (b), glycerol (up triangle) and ChCl:G (star) (c). 304 
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All three polyol-based HBDs accelerated the ethanolysis of expired sunflower oil over both 305 

calcined and non-calcined CaO, compared to the reactions in the presence of only CaO or 306 

ChCl. The positive influence of all three DESs on the reaction was more pronounced with 307 

calcined CaO than with non-calcined CaO. In the presence of glycerol, the decrease of FAEE 308 

content in the final stage of the reaction was attributed to the reverse reaction favored by the 309 

increased concentration of glycerol by-product. Lower viscosity of ethylene glycol and 310 

propylene glycol compared to that of glycerol might also contribute to their more efficient 311 

effect on the reaction rate. All three polyol-based DESs also gave better results with calcined 312 

CaO than with non-calcined CaO, which could be explained in the same way as it was done 313 

for the amide-based DESs. In these DESs the solubility of CaCO3 and Ca(OH)2 is higher 314 

(Table 1). 315 

3.1.5 Selection of the “best” cosolvent 316 

Although the reactions with calcined CaO combined with HBDs or DESs provided better 317 

results, they are economically and energetically more demanding than the reactions catalyzed 318 

by non-calcined CaO. From this point of view, the system with non-calcined CaO should be 319 

looked for potential commercial utilization. Moreover, the polyol-based DESs were superior 320 

over the amide-based DESs. The same was also observed for the enzyme-catalyzed biodiesel 321 

production with [34] or without microwave irradiation [35]. However, no report in the 322 

available literature has compared so far the polyol- and amide-based DESs used in 323 

heterogeneously catalyzed transesterification reactions.  324 

Among the amide-based DESs, the most optimal choice is ChCl:U DES, while among the 325 

polyol-based HBDs, the best choice should be either ChCl:EG or ChCl:PG. However, from 326 

ecological point of view, PG is preferred than toxic EG. Taking into account the fact that 327 

glycerol is the by-product of the transesterification, the less active ChCl:G DES might also be 328 
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a very promising choice, as its use may reduce the overall costs of the process. Therefore, the 329 

non-calcined CaO/ChCl:G DES system is also suggested for further optimization. 330 

3.2 Characterization of the used CaO 331 

In order to get more insight into the catalytically active phase(s), the used CaO was separated 332 

from the reaction mixtures after the optimal 2 h reaction and analyzed by FTIR and XRD. For 333 

comparison, commercial non-calcined CaO was also analyzed. 334 

3.2.1 FTIR of CaO 335 

In the FTIR spectrum of original non-calcined CaO (Fig. 3), the sharp peak at 3642 cm
–1

 can 336 

be attributed to the O–H stretching from Ca(OH)2 [20] while the bands at 1447 and 875 (874) 337 

cm
–1

 are assigned to the ν3 asymmetric stretching and the ν2 symmetric deformation of 338 

carbonate groups of CaCO3 [20,36,37], respectively clearly indicating the presence of CaCO3. 339 

During storage, CaO absorbs moisture and CO2 from the air, so its surface is being covered 340 

with hydroxide and carbonate [8]. During calcination, CaO starts to lose carbonate and 341 

hydroxide, so their absorption bands are less pronounced [38], as it can be seen in the FTIR 342 

spectrum of calcined CaO. In all FTIR spectra of both non-calcined and calcined CaO 343 

collected from the reaction mixtures, either without or with DESs or its constituents (Figs. 3-344 

6), some common bands could be identified.  345 



18 
 

 346 

Fig. 3. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 347 

recovered from the reaction mixture after 2 h. 348 

 349 

Fig. 4. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 350 

recovered from the reaction mixture after 2 h of the reaction carried out in the presence of the 351 

DESs’ constituents. 352 
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 353 

Fig. 5. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 354 

recovered from the reaction mixture after 2 h of the reaction carried out in the presence of the 355 

the amide-based DESs. 356 



20 
 

 357 

Fig. 6. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 358 

recovered from the reaction mixture after 2 h of the reaction carried out in the presence of the 359 

polyol-based DESs. 360 

A strong, sharp and very pronounced band at 3643 cm
–1

 represents the ν(O–H) stretching 361 

vibration of the –Ca–OH groups from Ca(OH)2, derived from Ca(OH)2 present in the sample 362 

[36] or by hydration of the CaO surface by water from the Ca-ethoxide synthesis [8]. It was 363 

also speculated that this band could be related to the C–OH groups of glyceroxide units 364 

bonded to the Ca atoms in Ca-diglyceroxide [39,40]. However, since this band is not present 365 

in the FTIR spectrum of clean Ca-diglyceroxide [8], it indicates the presence of Ca(OH)2. A 366 

broad band in the range of 3000–3600 cm
–1

 arises from the O–H stretching vibrations from 367 

Ca(OH)2 [36] or from the hydrogen bond of the O–H group [20,40]. This suggests adsorption 368 

of ethanol molecules on the surface of CaO via O–H group [8] and/or the possible 369 

contribution of water physisorbed on the surface of the CaO [39,41]. Sharp bands in the range 370 
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of 2800–3000 cm
–1

 are due to the ν(C–H) stretching vibrations of –CH3 and –CH2 groups. 371 

These bands are a characteristic of Ca-ethoxide [36,42,43] but they also appear in the 372 

spectrum of Ca-diglyceroxide [20,39-41]. Sharp bands in the range of 1400–1600 cm
–1

 373 

correspond to the ν(C–H) bending vibrations from Ca-diglyceroxide [20,39,40], as well as the 374 

bands around 1460 cm
–1

 in the Ca-ethoxide spectrum [43]. Sharp but weak band around 1319 375 

cm
–1

 can be assigned to the C–O–H bending modes of glyceroxide units from Ca-376 

diglyceroxide [8,39]. However, in the FTIR spectrum of pure Ca-diglyceroxide, another 377 

characteristic band for this bending mode is seen around 1380 cm
–1

 [8,39], which cannot be 378 

revealed in our spectra. Many sharp and weak bands in the ranges of 1200–1350 cm
–1

 and 379 

700–1000 cm
–1

 arise from various bending modes of C–H bonds, typically seen in the Ca-380 

diglyceroxide spectrum [8,39,44]. Sharp and weak bands for the stretching vibration of –C–O 381 

in the C–OH group of primary alcohol (in the 1050–1085 cm
–1

 range) and in C2OH group of 382 

secondary alcohol (in the 1125–1205 cm
–1

 range) are also noticeable. These bands appear in 383 

the spectrum of Ca-diglyceroxide [8,20,39,44]. However, band for the –C–O (primary 384 

alcohol) stretching can also arise from Ca-ethoxide [43]. Sharp and weak bands around 860–385 

870 cm
–1

 arise from the ν(C–C) stretching vibration [8,39]. The sharp, small and weak band 386 

around 875 cm
–1

 arise from the ν2 symmetric deformation of carbonate groups of CaCO3 387 

[8,20,36,37] while the other band at around 1447 cm
–1

 can be assigned to the ν3 asymmetric 388 

stretching of carbonate groups of CaCO3 [36] overlapped with surrounding stronger bands. 389 

This indicates the presence of small amounts of CaCO3. 390 

3.2.2 XRD of CaO 391 

The XRD analysis of non-calcined CaO (Fig. 7) reveals the peaks at 32.4, 37.55, 54.05, 64.35 392 

and 67.55° 2 and the peaks at 18.15, 34.25, 47.3, 51, 62.75 and 64.35° 2 that could be 393 

assigned to the CaO phase (PDF#82-1690) and Ca(OH)2 (PDF#84-126), respectively while 394 

the peak at about 29.5° and a very weak peak at 43.14°
 
2  indicate the presence of CaCO3 395 

phase (PDF#85-1108), which proves the sensitivity of CaO to CO2 and moisture from the 396 
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atmosphere. For the calcined CaO sample (Fig. 7), the dominant phase is CaO while very 397 

broad peaks at about 18, 34 and 50.9°
 
2 suggest the presence of Ca(OH)2 phase in a small 398 

amount. In addition, the peak at 29.45°
 
2 may be attributed to the CaCO3 phase. This 399 

suggests that CaO has successfully been activated by calcination. 400 

 401 

Fig. 7. XRD patters of non-calcined and calcined CaO combined with different DESs 402 

(ChCl:DMU, ChCl:TU, ChCl:U, ChCl:EG, ChCl:PG and ChCl:G) or combined with 403 

constituents of DESs’ (urea, ChCl and glycerol), all used as catalysts in ethanolysis. 404 
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In the XRD patterns of non-calcined and calcined CaO combined with different DESs or with 405 

their constituents (Fig. 7), the presence of Ca(OH)2 and CaCO3 phase is proven by its 406 

characteristic peaks at about 18.15, 28.85, 34.2, 47.35, 51.05 and 54.55° 2 and the peaks at 407 

about 29.4° 2. In the samples of non-calcined or calcined CaO with amide- or polyol-based 408 

DESs or with constituents of DESs (ChCl, urea and glycerol), the presence of Ca(OH)2 with 409 

little CaCO3 is obvious. Ca-diglyceroxide can be identified by its most intensive peaks at 8.5 410 

and 10.4 and 21.3° 2  (PDF#21-1544) only in the samples of the following systems: calcined 411 

CaO/ChCl:G, calcined CaO/ChCl:U and non-calcined CaO/glycerol. The broad peak 412 

(amorphous hump) with a maximum at about 20.5° 2 plausible arises from complex 413 

mixtures of organic compounds occurring during the reaction. The intensity of this 414 

amorphous hump in some cases is very pronounced (for example, calcined CaO/ChCl:EG and 415 

non-calcined CaO/ChCl:TU) while for same samples (non-calcined CaO and calcined CaO), 416 

it becomes dominant at XRD patterns. In the samples of non-calcined or calcined CaO 417 

collected after the reaction without or with DESs, no XRD peaks of CaO can be seen because 418 

of the hydration of CaO during the catalyst collection step [20]. 419 

The dominant broad peak at about 20.5° 2  in the samples of non-calcined or calcined CaO 420 

collected from the reaction mixtures can be explained easily. Since the FAEE content after 2 h 421 

in these reactions was very low (5.9±0.3% and 18.0±2.1%, respectively), it was clear that the 422 

amount of glycerol (a by-product) was too low to react with CaO and produce enough amount 423 

of catalytically active Ca-diglyceroxide. This was in accordance with Kouzu et al. [44] who 424 

reported that after 0.25 h of the CaO-catalyzed methanolysis of soybean oil, the XRD patterns 425 

indicated the presence of only CaO and Ca(OH)2 while the XRD patterns of Ca(C3H7O3)2 426 

were noticeable after 2 h (when the reaction was completed). The amorphous hump could also 427 

originate from Ca-ethoxide produced in the earlier stage of the reaction. The presence of Ca-428 

diglyceroxide in the XRD pattern of the calcined CaO/ChCl:U and CaO/ChCl:G system was 429 

correlated with their high FAEE contents of 98.1±1.2% and 94.9±1.4%, respectively. Among 430 
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non-calcined CaO/amide-based DESs, only the non-calcined CaO/ChCl:U system provided 431 

high FAEE content of 93.8±1.3%, unlike the systems with ChCl:DMU and ChCl:TU (FAEE 432 

content of 36.1±1.4% and 47.0±1.9%, respectively). On the other hand, the non-calcined 433 

CaO/polyol-based DESs systems provided FAEE contents higher than 94%. In the systems 434 

with constituents of DESs, Ca-diglyceroxide was present only in the XRD pattern of the non-435 

calcined CaO/glycerol system, which was understandable since glycerol reacted with CaO 436 

and Ca(OH)2 and provided Ca-diglyceroxide before the start of ethanolysis. The FAEE 437 

content with non-calcined or calcined CaO with glycerol was 70.7±1.2% and 92.0±0.5%, 438 

respectively. When ChCl was present in the reaction medium, it could interact with glycerol, 439 

forming ChCl:G DES (first in 1:1 and later in 1:2 ChCl-to-glycerol molar ratio). However, the 440 

reaction with the non-calcined/ChCl system was not as efficient as the reaction where the 441 

already prepared ChCl:G DES was added as a cosolvent. In the case of urea, a lower FAEE 442 

content was reported (53.6±1.2% and 59.6±1.1% with the non-calcined and calcined 443 

CaO/urea systems, respectively). 444 

Additional facts need to be taken into consideration. The catalytically active phase cannot be 445 

identified as Ca-diglyceroxide solely on the basis of the XRD pattern [5]. Sánchez-Cantú et 446 

al. [45] reported that in the XRD of the catalyst used in the methanolysis of castor oil only 447 

Ca(OH)2 and CaCO3 could be identified after the first use while characteristic reflections of 448 

Ca-diglyceroxide almost disappeared, showing the easy dissolution of Ca-diglyceroxide 449 

crystalline phase. This finding was also reported by Granados et al. [46], who ascribed it to 450 

lixiviation of the active phase, causing the deactivation of the catalyst. Produced Ca-451 

diglyceroxide could also be partially solubilized in ethanol during the transesterification, 452 

providing a soluble precursor, which was then transformed into the final solid base catalyst, 453 

e.g. in the methanolysis of oil carried out at 60 °C this precursor was CH3O-Ca-O(OH)2C3H5 454 

(named “calcium-X”) [47]. Based on these considerations, the amount of Ca-diglyceroxide 455 

crystals was possibly too small to exceed the XRD apparatus limit detection, but they were 456 
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active in transesterification, as noted by Sánchez-Cantú et al. [45]. Also, according to 457 

Rodriguez-Navarro et al. [36], when the Ca(OH)2 particles were transformed into Ca-458 

ethoxide, there were no XRD peaks that corresponded to crystalline alkoxide and newly 459 

formed Ca-ethoxide was amorphous. Amorphization resulted from desolvation during oven-460 

drying of the sample of the produced Ca-ethoxide, so only Ca(OH)2 and trace amounts of 461 

CaCO3 are seen in the XRD patterns. 462 

3.3 Mechanisms of activation of CaO in the presence of DESs 463 

Calcined and non-calcined CaO reacted with ethanol and glycerol, forming Ca-ethoxide [43] 464 

and Ca-diglyceroxide [44,46,48], efficient catalysts for transesterification reaction [43,49]. 465 

Ca(OH)2 present in the CaO samples can also react with ethanol and glycerol, forming Ca-466 

ethoxide [43] and Ca-diglyceroxide [50]. Ca-alkoxides can significantly reduce the rate of 467 

Ca(OH)2 transformation into the cemented CaCO3 [36]. Mechanism pathways of CaO and 468 

Ca(OH)2 activation with alcohol or glycerol are well explained in the literature [8,50]. 469 

For both calcined and non-calcined CaO used as a catalyst, the induction period, characterized 470 

by a low FAEE production rate, was observed but it was shorter in the case of calcined CaO 471 

due to the increased number of available active centers on the catalyst particles released by 472 

degradation of Ca(OH)2 and CaCO3. In the presence of the DESs, the induction period was 473 

further reduced while the initial FAEE production rate significantly increased (Figs. 1 and 2). 474 

This was attributed to the Ca-ethoxide formation from CaO, Ca(OH)2 and CaCO3 during 475 

preheating of the catalyst, ethanol and the DES at 70 °C, which was promoted by their 476 

dissolution into the DES. Therefore, in the beginning of the reaction, the initial concentration 477 

of Ca-ethoxide (i.e. ethoxide ions, the first catalytic specimen) in the reaction mixture was 478 

higher than in the absence of the DES, causing a faster ethanolysis reaction. As the reaction 479 

progresses, the produced glycerol reacted with CaO and Ca(OH)2, forming Ca-diglyceroxide 480 

(the second catalytic specimen), which contributed to the further acceleration of the 481 

ethanolysis. Among the amide-based DESs, CaO (either calcined or non-calcined) in the 482 
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presence of ChCl:U provided the highest FAEE content within 2 h of the reaction, probably 483 

because it was less viscous than ChCl:DMU and ChCl:TU DESs, providing less mass transfer 484 

limitations. All tested polyol-based DESs were less viscous than ChCl:DMU and ChCl:TU 485 

[22], implying their better efficiency in the ethanolysis. It might be speculated that ChCl:G 486 

DES was the most efficient system probably because Ca-diglyceroxide had already been 487 

formed during preheating of the mixture of CaO, ethanol and ChCl:G DES, thus being present 488 

in the reaction mixture from the beginning of the ethanolysis. 489 

3.4 Reusability of the non-calcined CaO catalyst activated by different DESs 490 

Both the catalytic activity and reusability of the non-calcined CaO catalysts activated by 491 

different DESs are important for their potential industrial application. To test the activation 492 

effect of the DESs on non-calcined CaO and the reusability of the activated CaO, the CaO 493 

catalyst was separated from the reaction mixture with different DESs after 2 h by 494 

centrifugation and used without any treatment (no addition of DES, washing and 495 

recalcination) in the next five batches under the same reaction conditions. The ChCl:U DES 496 

was found to be superior among the amide-based DESs (Fig. S.3, Supplementary material). 497 

The FAEE content with ChCl:U DES was 85.5±1.57% after five time reuses. Similar results 498 

were observed with different polyol-based DESs (Fig. S.3, Supplementary material). The 499 

FAEE content achieved with ChCl:EG, ChCl:PG and ChCl:G after five time reuses was 500 

86.2±0.90%, 85.2±0.72% and 83.4±1.06%, respectively. The decrease of FAEE content with 501 

catalyst reuse could be due to the uncomplete CaO separation from the reaction mixture, the 502 

partial loss of CaO due to its leaching and the deactivation of CaO during the reaction and 503 

separation. Besides that, the reaction products might cover the surface of CaO catalyst, thus 504 

reducing number of active sites [37]. 505 
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3.5 Reusability of the ChCl:G DES recovered from the final reaction mixture 506 

The reusability of the ChCl:G DES recovered from the final reaction mixture, coupled with 507 

either recovered or fresh CaO, was tested in four consecutive batch reactions, and the 508 

resulting FAEE contents found after 2 h reactions are shown in Fig. S.4 (Supplementary 509 

material). The amount of the recovered ChCl:G DES in all experiments was constant (20% 510 

of the mass oil). In the first and second series of experiments, the mass of the recovered 511 

ChCl:G DES/glycerol product was increased because of glycerol extraction by ChCl:G DES 512 

[51,52].  513 

In the first series, where the recovered ChCl:G DES/glycerol product and the recovered CaO 514 

were used, the FAEE content in the second batch (96.4±2.8%) was slightly higher than in the 515 

first batch (94.5±2.6%). This was ascribed to the presence of a higher amount of Ca-516 

diglyceroxide originating from the recovered catalyst and the reaction between CaO and 517 

glycerol present in the recovered ChCl:G DES/glycerol product. However, the FAEE content 518 

decreased drastically in the third run (16.7±2.4%) because of the incomplete separation of the 519 

catalyst from the reaction mixture and the reduction of its catalytic activity caused by 520 

covering the surface of the catalyst by the reaction products [37]. 521 

In the second series, the recovered ChCl:G DES/glycerol product and fresh CaO were used. 522 

The FAEE content decreased steadily, being high after the third run (85.3±1.8%). Fresh CaO 523 

reacted with glycerol from the recovered ChCl:G DES/glycerol product during the 524 

preparation step, providing Ca-diglyceroxide that promoted the FAEE formation. 525 

In the third series, where the treated recovered ChCl:G DES/glycerol product was coupled 526 

with fresh CaO. After the second batch, the FAEE content of 83.7±2.2% was smaller than that 527 

achieved in the second series, which was attributed to a lower amount of glycerol present in 528 

the treated recovered ChCl:G DES/glycerol product, leading to a lower amount of Ca-529 

diglyceroxide. 530 
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3.6 Separation of fatty acid ethyl esters 531 

Separation of the phases of the final reaction mixture into the separatory funnel at the room 532 

temperature was much faster in the presence of the DES, for instance, ChCl:U, ChCl:PG, 533 

ChCl:EG or ChCl:G for 1 min and ChCl:DMU or ChCl:TU for 10 min, than in its absence. 534 

This phenomenon might be attributed to the reduction of soap formation in the presence of 535 

these DESs, as it was observed for the homogeneously-catalyzed ethanolysis of palm oil in 536 

the presence of ChCl:G [17,18] or ChCl:EG [19]. On the other hand, the very viscous systems 537 

containing CaO and urea, 1,3-dimethylurea, thiourea, propylene glycol, ethylene glycol, 538 

glycerol or ChCl did not separate even after 24 h. 539 

4. Conclusions  540 

Different ChCl-based DESs were tested as cosolvents in the ethanolysis of the expired 541 

sunflower oil catalyzed by either calcined or non-calcined CaO. Among the amide-based 542 

DESs, the ChCl:U/non-calcined CaO combination was the best choice. The polyol-based 543 

DESs were more efficient than the amide-based. Although ChCl:EG and ChCl:PG were more 544 

efficient, ChCl:G is more attractive because the use of glycerol as a by-product of the 545 

transesterification will reduce the process expenses. The non-calcined CaO catalysts activated 546 

by ChCl:U, ChCl:EG, ChCl:PG and ChCl:G DESs can be reused five times. Moreover, the 547 

recovered ChCl:G DES coupled with fresh CaO can be used in four consecutive batches. The 548 

phase separation at the end of the reaction occurred much faster with DES-containing 549 

systems. Both ChCl:U and ChCl:G DESs are safe, cheap, nontoxic, biodegradable, 550 

biorenewable and „green“ solvents and provide the elimination of the calcination step of CaO, 551 

thus reducing the overall process costs, so the non-calcined CaO catalytic systems with these 552 

DESs are suggested for further optimization. 553 
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Supplementary material of this work can be found in online version of the paper. 555 
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Artwork with Captions  703 

Figure Captions  704 

Fig. 1. The variations of the FAEE content with the progress of expired sunflower oils 705 

ethanolysis catalyzed by calcined (black symbols) or non-calcined (open symbols) CaO with 706 

no addition of HBDs or DESs (rhomb) and with addition of ChCl (circle) (a-c), urea (left 707 

triangle), ChCl:U (square) (a), 1,3-dimethylurea (right triangle), ChCl:DMU (down triangle) 708 

(b), thiourea (up triangle) and ChCl:TU (star) (c). 709 

Fig. 2. The variations of the FAEE content with the progress of expired sunflower oils 710 

ethanolysis catalyzed by calcined (black symbols) or non-calcined (open symbols) CaO with 711 

no addition of HBDs or DESs (rhomb) and with addition of ChCl (circle) (a-c), ethylene 712 

glycol (left triangle), ChCl:EG (square) (a), propylene glycol (right triangle), ChCl:PG (down 713 

triangle) (b), glycerol (up triangle) and ChCl:G (star) (c). 714 

Fig. 3. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 715 

recovered from the reaction mixture after 2 h. 716 

Fig. 4. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 717 

recovered from the reaction mixture after 2 h of the reaction carried out in the presence of the 718 

DESs’ constituents. 719 

Fig. 5. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 720 

recovered from the reaction mixture after 2 h of the reaction carried out in the presence of the 721 

the amide-based DESs.  722 

Fig. 6. FTIR spectra of the original non-calcined and calcined CaO and the CaO pastes 723 

recovered from the reaction mixture after 2 h of the reaction carried out in the presence of the 724 

polyol-based DESs.  725 

Fig. 7. XRD patters of non-calcined and calcined CaO combined with different DESs 726 

(ChCl:DMU, ChCl:TU, ChCl:U, ChCl:EG, ChCl:PG and ChCl:G) or combined with 727 

constituents of DESs’ (urea, ChCl and glycerol), all used as catalysts in ethanolysis. 728 

729 
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Fig. S.1 The variations of the FAEE content with the progress of expired sunflower oils 743 

ethanolysis catalyzed by non-calcined CaO (), calcined CaO (), Ca(OH)2 () and CaCO3 744 

(). 745 
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Abbreviations: ChCl:DMU - choline chloride:1,3-dimethylurea; ChCl:EG - choline chloride:ethylene glycol; 

ChCl:G - choline chloride:glycerol; ChCl:PG - choline chloride:propylene glycol; ChCl:TU - choline 

chloride:thiourea, ChCl:U - choline chloride:urea; DES - deep eutectic solvent; FAEE - fatty acid ethyl ester. 
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 746 

 747 

Fig. S.2 Temperature dependence of the density (a) and the viscosity (b) of ethanol () and 748 

ethanol mixed with the studied DESs: ChCl:EG (), ChCl:PG (), ChCl:G (), ChCl:U 749 

(), ChCl:DMU () and ChCl:TU (). 750 

 751 

 752 

Fig. S.3 Reusability of non-calcined CaO catalyst activated by different DESs. CaO activated 753 

with a DES was used in the first batch, while only the recovered CaO was used in the other 754 

batches. 755 

 756 
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 757 

Fig. S.4 The FAEE content after 2 h reaction in four consecutive batches of the sunflower oil 758 

ethanolysis catalyzed by either fresh or recovered CaO catalysts in the presence of the 759 

recovered ChCl:G DES as a cosolvent (70 °C and the ethanol-to-oil molar ratio was 12:1; 760 

reaction systems: recovered ChCl:G DES/glycerol product and recovered CaO - black 761 

rectangles, recovered ChCl:G DES/glycerol product and fesh CaO - white rectangles, and 762 

treated recovered ChCl:G DES/glycerol product was coupled with fresh CaO - gray 763 

rectangles) 764 


