UDK 622.785: 661.183.8

High Temperature Sintering Kinetics of α-Al₂O₃ Powder

M. R. Ivanović^{1*}, M. Nenezić², V. Jokanović³

¹ Faculty of Matalurgy-Tehnology, Podgorica, Serbia and Montenegro

² KAP Podgorica, Podgorica, Serbia and Montenegro

Abstract: The sintering kinetics of α -Al₂O₃ powder is investigated in this paper. Commercial α -Al₂O₃ powdered compacts were sintered close to 95 % of the theoretical density. The characteristic parameters of sintering kinetics were also determined.

Keywords: Alumina; Sintering.

Резюме: В данной работе исследовали кинетику спекания α - Al_2O_3 порошка. Прессовки коммерческого α - Al_2O_3 спекали почти до 95 % теоретической плотности. Определены характерные параматры кинетики спекания.

Ключевые слова: Глинозём; спекание.

Садржај: У овом раду проучена је кинетика синтеровања α - Al_2O_3 праха. Испресци комерцијалног α - Al_2O_3 синтеровани су до близу 95 % теоријске густине. Такође су одређени карактеристични параметри кинетике синтеровања.

Кључне речи: Алумина; синтеровање.

1. Introduction

Alumina (α -Al₂O₃) is one of the most examined materials [1]. Generally, fundamental investigations of sintering kinetics and mechanism of α -Al₂O₃ powder are most important in the physics of sintering.

The results recorded by measuring the shrinkage rate of the pressed samples of α -Al₂O₃ powder are frequently used in examinations of the sintering kinetics of this material [2-5]. These results showed that sintering of α -Al₂O₃ is controlled by grain-boundary diffusion in the initial stage. The change of activation energy during non-isothermal sintering of α -Al₂O₃ is in detail examined using the data obtained, which is used to calculate the apparent diffusion coefficient [6]. Experimental results of sintering highly sinterable α -Al₂O₃ showed that grain-boundary diffusion is the predominant mechanism [7].

In this work we examined the kinetics of high-temperature sintering of α -Al₂O₃ using the relationship between linear shrinkage and the sintering time. The characteristic parameters of this process were defined, too.

³ Institute of Technical Sciences of the SANU, Belgrade, Serbia and Montenegro

^{*} Corresponding author

2. Experimental Procedure

Commercial α -Al₂O₃ was used in this work. The powder contained 0.78 % impurities including 0.42 % SiO₂, 0.21 % MgO and 0.15 % CaO. The average size of particle was 1.2 μ m. The powder was pressed under the high pressure of 1 t/cm^2 and we obtained compacts whose density was 1.73 g/cm³. Sintering was carried out in the temperature interval between 1823-1973 K for 15-480 min. The density of sintered samples is shown in Tab. I.

t (min)	ρ_s (g/cm ³)			
	1823 K	1873 K	1923 K	1973 K
15	3.01	3.11	3.40	3.53
60	3.13	3.27	3.47	3.55
120	3.20	3.38	3.50	3.61
240	3.31	3.45	3.56	3.65
480	3.51	3 59	3.64	3.70

Tab. I The density of sintered α -Al₂O₃ samples

The density of the green compact (ρ_0) and those of isothermally sintered compacts (ρ_s) were calculated from dimensions and weights.

3. Discussion

In this work examinations of sintering kinetics of α -Al₂O₃ were performed in the temperature range typical for the final sintering stage. A logistic curve was obtained after 15 min. of sintering, while a practically linear dependence was obtained after 480 min. (Fig. 1). According to the results obtained we can see that maximal densities of the compacts are approached after 480 min.

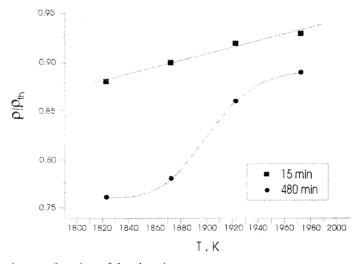


Fig. 1 Relative density as a function of the sintering temperature.

Lee et al. [8] determined the relationship between linear shrinkage α -Al₂O₃ and sintering temperature under conventional sintering conditions. They concluded that below 1673 K linear shrinkage is very small. Our results indicate that shrinkage, in the temperature interval of 1823-1973 K, is 17-22 %.

For sintering time less than 60 min. (Fig. 2), the kinetics of that process can be described by the following equation:

$$n = dt/t / d \left(\frac{\Delta L}{L_0} \right),$$

where t is the sintering time and $\Delta L/L_0$ is the relative linear shrinkage. For our conditions n=1.

Fig. 2 Linear shrinkage of the specimen as a function of the sintering time.

Using the formal sintering rate, the activation energy of the high-temperature process of sintering α -Al₂O₃ samples (Fig. 3) was calculated and its value is 240 kJmol⁻¹K⁻¹.

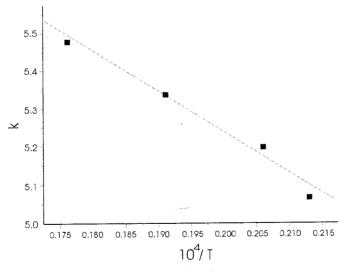


Fig. 3 The sintering rate constant as a function of the sintering temperature.

4. Summary

A study of conventional sintering of α -Al₂O₃ powder compacts (1823-1973 K) showed that the samples could reach approximately 95 % of the theoretical density at the temperature of 1973 K. At all used temperatures, for sintering times below 60 min., a linear dependence quantitavely describes the linear process of sintering. In this case, the activation energy of the sintering process is 240 kJmol⁻¹K⁻¹.

References

- 1. A. G. Guy, Introduction to Material Science, Mc Graw-Hill Book, New Work, 1972.
- 2. R. L. Coble, J. Am. Ceram. Soc., 41 (1958) 55-62.
- 3. D. L. Johnson, J. Appl. Phys., 40 (1969) 192-200.
- 4. W. S. Young, I. B. Cutter, J. Am. Ceram. Soc., 53 (1970) 659-660.
- 5. W. Zeng, L. Gao, L. Gui, J. Guo, Ceram. Int., 35 (1999) 723-725.
- 6. T.-T. Fang, J.-T. Shinne, F.-S. Shain, Mater. Chemistry and Physics, 80 (2003) 108-113.
- 7. T. Ikegami, Y. Kitami, M. Tsutsummi, Ceram. Int., 25 (1999) 73-78.
- 8. J. S. Lee, X. D. Sun, Y. R. Wang, W. X. Dong, H. Q. Ru, S. M. Hao, Acta Metal. Sinica, 34 (1998) 195-199.