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Abstract: This paper presents a class of integer codes capable of correcting single 

asymmetric errors. The presented codes are defined over the ring of integers modulo 2
b
 – 1 

and are constructed with the help of a computer. The results of an exhaustive search have 

shown that, for practical lengths up to 4096 bits, the proposed codes use the same number 

of check-bits as the best systematic single asymmetric error correcting codes (SAECCs). 

Besides this, it is found that for some lengths the presented codes are perfect. Finally, the 

paper shows that the encoding/decoding complexity of the proposed codes is notably lower 

than that of the best systematic SAECCs. 
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1. Introduction 

 Conventional coding theory is mainly focused on constructing codes for use over channels 

in which 1 → 0 and 0 → 1 errors occur with equal probability. However, it is known that some 

channels display only 1 → 0 errors. For example, in optical communications, photons may fade 

or fail to be detected (1 → 0 errors), but the creation of spurious photons (0 → 1 errors) is not 

possible [1]. Likewise, in some VLSI circuits and memories charges may leak with time (1 → 0 

errors), but new charges cannot be spontaneously created (0 → 1 errors) [2]. 

Motivated by these and similar examples, researchers began constructing codes that correct 

asymmetric (1 → 0) errors. Among them, special attention has been paid to the construction of 

single asymmetric error correcting codes (SAECCs). The reason for this was an attempt to 

design codes that would have higher rates than Hamming codes [3]. Although some successes 

have been achieved in the case of non-systematic codes [4]-[12], to date none systematic 

SAECC has been constructed that outperforms Hamming codes. This is not surprising given that 

Bose and Al-Bassam [13] showed that the best systematic SAECCs have the same parameters as 

Hamming codes, except possibly for the lengths n = 2
u
 and n = 2

u
 + 1, where u ≥ 4. In these two 

cases, as they stated, there may exist systematic SAECCs that are better than Hamming codes. 

However, such codes were never reported in the literature. The only known systematic SAECCs 

are those designed by Abdel-Ghaffar and Ferreira [14]. These codes are obtained by modifying 

group-theoretic (GT) codes [2], which means that they have the same parameters as Hamming 

codes. 
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In this paper, we will present a class of systematic SAECCs that are significantly different 

from the codes proposed in [14]. The main difference is that the presented codes are not binary 

oriented, but are defined over the ring of integers modulo 2
b 

– 1. In addition, unlike [14], they 

are constructed with the help of a computer. One consequence of these differences is that our 

codes are perfect only for certain lengths. However, as we will see, for all practical lengths up to 

4096 bits, they use the same number of check-bits as the codes from [14]. 

The organization of this paper is as follows: Section 2 deals with the construction of integer 

codes capable of correcting single asymmetric errors. In Section 3, the proposed codes are 

evaluated and compared with the best systematic SAECCs, while Section 4 concludes the paper. 

2. Integer SAEC Codes  
 A. Codes Construction 

As stated previously, the only known systematic SAECCs are those obtained by modifying 

GT codes. According to [14], a modified GT (MGT) code can be defined as 
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where u = (u1,..., uK, uK+1,..., un) {0,1} n
is the codeword vector, di is the element of the Abelian  

group G of the order K + 1 and
1
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d u is a fixed integer in G. Unlike MGT codes, 

the presented ones are defined over the ring of integers modulo 2
b 

– 1. This is formally described 

by the following definitions. 

Definition 1. [15] Let
2 1bZ = {0, 1,…, 2

b
 – 2} be the ring of integers modulo 2

b 
– 1 and let 
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
 iB be the integer representation of a b-bit byte, where na {0, 1} and 1 ≤ i ≤ k.  

Then, the code C  (b, k, c), defined as 
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is an (kb + b, kb) integer code, where x = (B1, B2, ..., Bk, Bk+1)
+1

2 1b

kZ


 is the codeword vector, c = 

(C1, C2, ..., Ck, 1)
+1

2 1b

kZ


 is the coefficient vector and Bk+1 2 1
 bZ is an integer. 

Definition 2. [16] Let x = (B1, B2,…, Bk, Bk+1)
+1

2 1b

kZ


 , y = (B1, B2,…, Bk, Bk+1)
+1

2 1b

kZ


 and   

e = (B1 – B1, B2 – B2,…, Bk – Bk, Bk+1 – Bk+1) = (e1, e2,...,   ek, ek+1)
+1

2 1b

kZ


 be respectively, the sent  

codeword, the received codeword and the error vector. Then, the syndrome S of the received 

codeword is defined as 
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Definition 3. An (kb + b, kb) integer code is called SAEC if it can correct error vectors 

from the set ε = {(– 2
r
, 0, ..., 0, 0), ..., (0, 0, ...,  – 2

r
, 0), (0, 0,  ..., 0, 2

r
)}, where 1 ≤ r ≤ b –    1. 
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Definition 4.   The error set for (kb + b,  kb) integer SAECCs is defined by 

, 1 2= Ub kξ s s

where 

 1 = – 2 (mod 2 1): 0 – 1, 1i     r bs C r b i k                                                                                                                        (5) 

 2 = 2 : 0 – 1 rs r b

From the above it is obvious that integer SAECCs cannot be constructed without knowing 

the values of the Ci's. This fact, however, does not prevent us to state the following theorems. 

Theorem 1. An (kb + b, kb) integer SAECC exists only if  

, 1 ,b kξ  ( + )= b k  

where ,b kξ denotes the cardinality of ,b kξ . 

Proof. Observe that the set ,b kξ can be expressed as 
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The elements of the above subsets will be nonzero and mutually different only if the coefficients 

Ci have values such that 
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As a result, it follows that 

, 1 +1 +1 1) 1).= = ( = (    Lb k k k kξ m m m m k+ b k + □ 

Theorem 2. For any (kb + b, kb) integer SAECC it holds that 

2 2
.

b b
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Proof. From Theorem 1 we know that the set ,b kξ has b · (k + 1) nonzero elements. On the 

other hand, Definition 1 says that the total number of nonzero syndromes is equal to 2
b
 – 2. 

Obviously, we have the inequality 
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wherefrom it follows that 
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Theorem 3. Any perfect (kb  +   b, kb) integer SAECC, if exists,  has a rate of (2
b

  –       b          –       2)  /  (2
b

         –            2). 

Proof. This theorem follows directly from Theorem 2.  

Table 2. Coefficients for Integer SAECCs with Parameter b ≤ 12. 

b = 3 

2                    

b = 4 

2 3                   

b = 5 

2 3 5 7 11                

b = 6 

2 3 5 7 11 13 15 23             

b = 7 

2 3 5 7 9 11 13 15 19 21 23 27 29 31 43 47 55    

b = 8 

2 3 5 7 9 11 13 15 19 21 23 25 27 29 31 37 39 43 45 47 
53 55 59 61 63 87 91 95 111            

b = 9 

2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 35 37 39 41 
43 45 47 51 53 55 57 59 61 63 75 77 79 83 85 87 91 93 95 103 

107 109 111 117 119 123 125 127 171 175 183 187 191 223 239      

b = 10 

2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 35 37 39 41 
43 45 47 49 51 53 55 57 59 61 63 69 71 73 75 77 79 83 85 87 
89 91 93 95 101 103 105 107 109 111 115 117 119 121 123 125 127 147 149 151 

155 157 159 167 171 173 175 179 181 183 187 189 191 205 207 213 215 219 221     223 
235 237 239 245 247 251 253 255 343 347 351 367 375 379 383 439 447 479   

b = 11 

2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 
41 43 45 47 49 51 53 55 57 59 61 63 67 69 71 73 75 77 79 81 
83 85 87 89 91 93 95 99 101 103 105 107 109 111 113 115 117 119 121 123 

125 127 137 139 141 143 147 149 151 153 155 157 159 163 165 167 169 171 173 175 
179 181 183 185 187 189 191 199 201 203 205 207 211 213 215 217 219 221 223 229 
231 233 235 237 239 243 245 247 249 251 253 255 293 295 299 301 303 307 309 311 
315 317 319 331 333 335 339 341 343 347 349 351 359 363 365 367 371 373 375 379 
381 383 411 413 415 423 427 429 431 437 439 443 445 447 463 469 471 475 477 479 
491 493 495 501 503 507 509 511 683 687 695 699 703 727 731 735 751 759 763 767 
879 887 895 959 991                

b = 12 

2 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 
41 43 45 47 49 51 53 55 57 59 61 63 67 69 71 73 75 77 79 81 
83 85 87 89 91 93 95 97 99 101 103 105 107 109 111 113 115 117 119 121 

123 125 127 133 135 137 139 141 143 145 147 149 151 153 155 157 159 163 165 167 
169 171 173 175 177 179 181 183 185 187 189 191 197 199 201 203 205 207 209 211 
213 215 217 219 221 223 227 229 231 233 235 237 239 241 243 245 247 249 251 253 
255 275 277 279 281 283 285 287 291 293 295 297 299 301 303 307 309 311 313 315 
317 319 327 329 331 333 335 339 341 343 345 347 349 351 355 357 359 361 363 365 
367 371 373 375 377 379 381 383 397 399 403 405 407 409 411 413 415 421 423 425 
427 429 431 435 437 439 441 443 445 447 457 459 461 463 467 469 471 473 475 477 
479 485 487 489 491 493 495 499 501 503 505 507 509 511 587 589 591 595 597 599 
603 605 607 613 615 619 621 623 627 629 631 635 637 639 661 663 667 669 671 679 
683 685 687 691 693 695 699 701 703 717 719 723 725 727 731 733 735 743 747 749 
751 755 757 759 763 765 767 821 823 827 829 831 847 853 855 859 861 863 871 875 
877 879 885 887 891 893 895 925 927 939 941 943 949 951 955 957 959 981 983 987 
989 991 1003 1005 1007 1013 1015 1019 1021 1023 1367 1371 1375 1387 1391 1399 1403 1407 1455 1463 

1467 1471 1499 1503 1519 1527 1531 1535 1759 1775 1783 1791 1919 1983       

 

Table 1. Number of Coefficients for Integer SAECCs with Parameter b ≤ 12. 

 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10 b = 11 b = 12 

Bound 1 2 5 9 17 30 55 101 185 340 

Experiment 1 2 5 8 17 29 55 98 185 334 
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The last step in constructing integer SAECCs is to find the Ci's that satisfy the condition of 

Theorem 1. For that purpose it is necessary to perform an exhaustive search on all possible 

candidates from the set  0,1 .
2 -1b
\Z In this paper, we have restricted ourselves to values of b less  

than or equal to 12. The reason for this is twofold: first, the number of the Ci's roughly doubles 

with the increase of b (Tables 1 and 2), and second, for the mentioned values of b the proposed 

codes are fully comparable with those presented in [15]. 

B. Error Correction Procedure 

The error correction procedure for the presented codes is very similar to those described in 

[15], [16]. In short, if S ≠ 0, the decoder will lookup the syndrome table (ST) to find the entry 

with the error correction data. After that, in the next step, it will execute the operation 

(mod 2 1)i iB B  b

where E{2
r
: 0 ≤ r ≤ b ‒ 1}. To generate the ST it is necessary to substitute the values of b and 

Ci into (5)-(6). In this way, exactly ,b kξ  (Theorem 1) relationships (Fig. 1) between the nonzero 

syndrome (element of the set ,b kξ ), error location (i) and error vector (E) will be established. So,  

when S ≠ 0, the decoder's task will be to find the entry with the first b bits as that of the 

syndrome S.  

Example 1. Let b = 5, k = 5, C1 = 2, C2 = 3, C3 = 5, C4 = 7 and C5 = 11. According to 

Theorem 1, the ST will have 5,5ξ = 25 entries (Table 3). Now, suppose that the encoder needs to 

encode 25 data bits, D = 10101 11001 10010 00110 01010. From (3) we know that the value of 

the last (sixth) byte will be equal to 

Bk+1 = B6 = 2 · 21 + 3 · 25  + 5 · 18 + 7 · 6  + 11 · 10 (mod 31) = 18 = 100102 

the codeword will have the form x = (B1, B2, B3, B4, B5, B6) = (101012, 110012, 100102, 001102, 

010102, 100102) = (21, 25, 18, 6, 10, 18). Assume now that the 5th bit is flipped. In that case, the 

codeword will have the form y = (B1, B2, B3, B4, B5, B6) = (101002, 110012, 100102, 001102, 

010102, 100102) = (20, 25, 18, 6, 10, 18). As explained previously, the decoder will perform the 

operation 

S = 2 · 20 + 3 · 25  + 5 · 18 + 7 · 6  + 11 · 10 – 18 (mod 31) = 29 

after which it will conclude that the first byte is in error (Table 3). As a result, it will execute the 

operation 

B1  = 20 + 1 (mod 31) = 21. 

 

Fig. 1. Bit-width of one syndrome table entry. 
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3. Evaluation and Comparison  

To evaluate the rate efficiency of the proposed codes, it is necessary to analyze data shown 

in Table 1. The first thing we notice from this table is an excellent agreement between the theory 

and experiments. More precisely, we see that for byte lengths b = 3, 4, 5, 7, 9 and 11 bits, we 

can construct six codes reaching the bound given in Theorem 2. These codes are either perfect 

((30, 25), (126, 119) and (2046, 2035)), or optimal ((6, 3), (12, 8) and (504, 495)) in the sense of 

maximum rate. On the other hand, we also see that for byte lengths b = 6, 8, 10 and 12 bits we 

cannot construct perfect or optimal codes. 

Despite this shortcoming, the presented codes are very efficient in terms of redundancy. To 

illustrate this, in Fig. 2, they are compared with codes from [14] and [15]. As we can see, for 

practical data lengths up to 4096 bits, the proposed codes require the same number of check-bits 

as the best systematic SAECCs [14] and one check-bit less than integer single error correcting 

(SEC) codes [15]. Besides this, from Fig. 2, it can be observed that perfect integer SAECCs 

have slightly lower rates than the codes from [14]. The reason for this is that the proposed codes 

are defined over an alphabet {0, 1,..., 2
b
 – 2}, which is a subset of the set {0, 1,..., 2

b
 – 1}. 

On the other hand, the main advantage of the proposed codes over the best systematic 

SAECCs lies in the ability to faster encode/decode data bits. Namely, from [16] we know that 

any integer encoder/decoder must perform approximately b  ·K operations per K-bit data word. In 

   

Fig. 2. Comparison of information-bit lengths and check-bit lengths of  

the best systematic SAECCs [14], the proposed codes and integer SEC codes [15]. 
. 

  

Table 3. The ST for the Perfect (30, 25) Integer SAEC Code. 

 S i E 

 

 S i E 

 

 S i E 

 

 S i E 

 

 S i E 

1 1 6 1 7 7 2 8 13 13 3 16 19 19 2 4 25 25 2 2 

2 2 6 2 8 8 6 8 14 14 2 16 20 20 5 1 26 26 3 1 

3 3 4 4 9 9 5 2 15 15 1 8 21 21 3 2 27 27 1 2 

4 4 6 4 10 10 5 16 16 16 6 16 22 22 3 8 28 28 2 1 

5 5 5 8 11 11 3 4 17 17 4 2 23 23 1 4 29 29 1 1 

6 6 4 8 12 12 4 16 18 18 5 4 24 24 4 1 30 30 1 16 

 



 8 

contrast to this, from (1) we observe that the MGT encoder/decoder executes two operations at 

the bit level: one multiplication between di and ui ( 2 ( 1)  log K operations) and one addition 

between two 2 ( 1)   log K bit integers ( 2 ( 1)  log K operations). Considering that there exist K  

data bits, we easily come to the conclusion that the MGT encoder/decoder must perform 

approximately K·log2K operations per K-bit data word. This means that the encoding/decoding 

complexity grows linearithmic with the data length, while in the case of proposed codes it 

increases linearly. 

4. Conclusion 

This paper proposed a class of integer codes capable of correcting single asymmetric errors. 

The proposed codes are constructed with the help of a computer and are very close to being 

optimal in terms of redundancy. The results of an exhaustive search have shown that, for 

practical data lengths up to 4096 bits, the proposed codes use the same number of check-bits as 

the best systematic single asymmetric error correcting codes. In addition, it has been shown that, 

for some lengths the proposed codes are perfect. The parameters of these codes are (2
b

  – 2, 2
b 

– b 

– 2), which makes them one of the most rate-efficient codes in the literature. 
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