DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye

Thumbnail
2020
bjelajac2020.pdf (10.97Mb)
Authors
Bjelajac, Anđelika
Petrović, Rada
Vujančević, Jelena
Veltruska, Katerina
Matolin, Vladimir
Siketić, Zdravko
Provatas, George
Jakšić, Milko
Stan, George E.
Socol, Gabriel
Mihailescu, Ion N.
Janaćković, Đorđe
Article (Accepted Version)
Metadata
Show full item record
Abstract
We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F–SnO2 (FTO) glass. Annealing was carried out at 500 °C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO2 nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes’ surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in... the degradation of methyl orange dye under visible light.

Keywords:
nanostructures / photoelectron spectroscopy / thin films
Source:
Journal of Physics and Chemistry of Solids, 2020, 147, 109609-
Publisher:
  • Elsevier
Funding / projects:
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200287 (Innovation Center of the Faculty of Technology and Metallurgy) (RS-200287)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200135 (University of Belgrade, Faculty of Technology and Metallurgy) (RS-200135)
  • CERIC-ERIC (20177018 proposal)
  • Structure Fund Project CZ.02.1.01/0.0/0.0/16_013/0001788
  • UEFISCDI, 304/2011
  • NIMP Core Programme 21 N
Note:
  • This is the peer-reviewed version of the article: Bjelajac, A., Petrović, R., Vujancevic, J., Veltruska, K., Matolin, V., Siketic, Z., Provatas, G., Jaksic, M., Stan, G.E., Socol, G., Mihailescu, I.N., Janaćković, D., 2020. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. Journal of Physics and Chemistry of Solids 147, 109609. https://doi.org/10.1016/j.jpcs.2020.109609
Related info:
  • Version of
    https://doi.org/10.1016/j.jpcs.2020.109609
  • Version of
    https://hdl.handle.net/21.15107/rcub_dais_9540

DOI: 10.1016/j.jpcs.2020.109609

ISBN: 0022-3697

WoS: 000567084700005

Scopus: 2-s2.0-85088148922
[ Google Scholar ]
14
8
Handle
https://hdl.handle.net/21.15107/rcub_dais_9541
URI
http://www.sciencedirect.com/science/article/pii/S0022369719328525
https://dais.sanu.ac.rs/123456789/9541
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Bjelajac, Anđelika
AU  - Petrović, Rada
AU  - Vujančević, Jelena
AU  - Veltruska, Katerina
AU  - Matolin, Vladimir
AU  - Siketić, Zdravko
AU  - Provatas, George
AU  - Jakšić, Milko
AU  - Stan, George E.
AU  - Socol, Gabriel
AU  - Mihailescu, Ion N.
AU  - Janaćković, Đorđe
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0022369719328525
UR  - https://dais.sanu.ac.rs/123456789/9541
AB  - We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F–SnO2 (FTO) glass. Annealing was carried out at 500 °C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO2 nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes’ surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.
PB  - Elsevier
T2  - Journal of Physics and Chemistry of Solids
T1  - Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye
SP  - 109609
VL  - 147
DO  - 10.1016/j.jpcs.2020.109609
UR  - https://hdl.handle.net/21.15107/rcub_dais_9541
ER  - 
@article{
author = "Bjelajac, Anđelika and Petrović, Rada and Vujančević, Jelena and Veltruska, Katerina and Matolin, Vladimir and Siketić, Zdravko and Provatas, George and Jakšić, Milko and Stan, George E. and Socol, Gabriel and Mihailescu, Ion N. and Janaćković, Đorđe",
year = "2020",
abstract = "We fabricated Sn-doped TiO2 nanotubular film via annealing of anodized TiO2 nanotubes grown on F–SnO2 (FTO) glass. Annealing was carried out at 500 °C in ambient air. Anatase crystal structure was achieved with no change in nanotubular morphology in respect to as-anodized amorphous TiO2 nanotubes. The X-ray photoelectron spectroscopy analysis revealed Sn on the surface of TiO2 film, following the thermal treatment, probably caused by the diffusion from FTO glass. Depth profile examination of the film chemical composition was conducted by elastic recoil detection analysis, which showed that in addition to the diffusion of Sn from FTO, diffusion of Ti to FTO concurrently occurred. Thus, a higher concentration of Sn was found at the bottom of the tubes, while a lower concentration was present on the tubes’ surface top. This explains the improved optical response revealed by a diffuse reflectance spectroscopy. The absorption enhancement demonstrated that Sn-doped TiO2 film was efficient in the degradation of methyl orange dye under visible light.",
publisher = "Elsevier",
journal = "Journal of Physics and Chemistry of Solids",
title = "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye",
pages = "109609",
volume = "147",
doi = "10.1016/j.jpcs.2020.109609",
url = "https://hdl.handle.net/21.15107/rcub_dais_9541"
}
Bjelajac, A., Petrović, R., Vujančević, J., Veltruska, K., Matolin, V., Siketić, Z., Provatas, G., Jakšić, M., Stan, G. E., Socol, G., Mihailescu, I. N.,& Janaćković, Đ.. (2020). Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids
Elsevier., 147, 109609.
https://doi.org/10.1016/j.jpcs.2020.109609
https://hdl.handle.net/21.15107/rcub_dais_9541
Bjelajac A, Petrović R, Vujančević J, Veltruska K, Matolin V, Siketić Z, Provatas G, Jakšić M, Stan GE, Socol G, Mihailescu IN, Janaćković Đ. Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye. in Journal of Physics and Chemistry of Solids. 2020;147:109609.
doi:10.1016/j.jpcs.2020.109609
https://hdl.handle.net/21.15107/rcub_dais_9541 .
Bjelajac, Anđelika, Petrović, Rada, Vujančević, Jelena, Veltruska, Katerina, Matolin, Vladimir, Siketić, Zdravko, Provatas, George, Jakšić, Milko, Stan, George E., Socol, Gabriel, Mihailescu, Ion N., Janaćković, Đorđe, "Sn-doped TiO2 nanotubular thin film for photocatalytic degradation of methyl orange dye" in Journal of Physics and Chemistry of Solids, 147 (2020):109609,
https://doi.org/10.1016/j.jpcs.2020.109609 .,
https://hdl.handle.net/21.15107/rcub_dais_9541 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB