Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces
Abstract
We define and study wave-front sets for weighted Fourier-Lebesgue spaces
when the weights are moderate with respect to associated functions for general sequences
{Mp} which satisfy Komatsu’s conditions (M.1) − (M.3)′
. In particular, when {Mp} is the
Gevrey sequence (Mp = p!
s, s > 1) we recover some previously observed results. Furthermore, we consider wave-front sets for modulation spaces in the same setting, and prove the
invariance property related to the Fourier-Lebesgue type wave-front sets.
Keywords:
Wave-front sets / weighted Fourier-Lebesgue spaces / Gelfand-Shilov spaces / ultradistributionsSource:
Bulletin T.CLI de l’Académie serbe des sciences et des arts, 2018, 81-111Publisher:
- Beograd : Académie Serbe des sciences et des arts
Projects:
Note:
- Bulletin t. 151 de l'Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles, sciences mathematiques no 43
Collections
TY - CONF AU - Teofanov, Nenad PY - 2018 UR - http://dais.sanu.ac.rs/123456789/9085 AB - We define and study wave-front sets for weighted Fourier-Lebesgue spaces when the weights are moderate with respect to associated functions for general sequences {Mp} which satisfy Komatsu’s conditions (M.1) − (M.3)′ . In particular, when {Mp} is the Gevrey sequence (Mp = p! s, s > 1) we recover some previously observed results. Furthermore, we consider wave-front sets for modulation spaces in the same setting, and prove the invariance property related to the Fourier-Lebesgue type wave-front sets. PB - Beograd : Académie Serbe des sciences et des arts C3 - Bulletin T.CLI de l’Académie serbe des sciences et des arts T1 - Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces SP - 81 EP - 111 ER -
@conference{ author = "Teofanov, Nenad", year = "2018", url = "http://dais.sanu.ac.rs/123456789/9085", abstract = "We define and study wave-front sets for weighted Fourier-Lebesgue spaces when the weights are moderate with respect to associated functions for general sequences {Mp} which satisfy Komatsu’s conditions (M.1) − (M.3)′ . In particular, when {Mp} is the Gevrey sequence (Mp = p! s, s > 1) we recover some previously observed results. Furthermore, we consider wave-front sets for modulation spaces in the same setting, and prove the invariance property related to the Fourier-Lebesgue type wave-front sets.", publisher = "Beograd : Académie Serbe des sciences et des arts", journal = "Bulletin T.CLI de l’Académie serbe des sciences et des arts", title = "Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces", pages = "81-111" }
Teofanov N. Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces. Bulletin T.CLI de l’Académie serbe des sciences et des arts. 2018;:81-111
,& Teofanov, N. (2018). Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces. Bulletin T.CLI de l’Académie serbe des sciences et des artsBeograd : Académie Serbe des sciences et des arts., null, 81-111.
Teofanov Nenad, "Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces" null (2018):81-111