Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces
Abstract
We define and study wave-front sets for weighted Fourier-Lebesgue spaces
when the weights are moderate with respect to associated functions for general sequences
{Mp} which satisfy Komatsu’s conditions (M.1) − (M.3)′
. In particular, when {Mp} is the
Gevrey sequence (Mp = p!
s, s > 1) we recover some previously observed results. Furthermore, we consider wave-front sets for modulation spaces in the same setting, and prove the
invariance property related to the Fourier-Lebesgue type wave-front sets.
Keywords:
Wave-front sets / weighted Fourier-Lebesgue spaces / Gelfand-Shilov spaces / ultradistributionsSource:
Bulletin T.CLI de l’Académie serbe des sciences et des arts, 2018, 81-111Publisher:
- Beograd : Académie Serbe des sciences et des arts
Funding / projects:
Note:
- Bulletin t. 151 de l'Académie serbe des sciences et des arts. Classe des sciences mathématiques et naturelles, sciences mathematiques no 43
Collections
Institution/Community
Cрпска академија наука и уметности / Serbian Academy of Sciences and ArtsTY - CONF AU - Teofanov, Nenad PY - 2018 UR - https://dais.sanu.ac.rs/123456789/9085 AB - We define and study wave-front sets for weighted Fourier-Lebesgue spaces when the weights are moderate with respect to associated functions for general sequences {Mp} which satisfy Komatsu’s conditions (M.1) − (M.3)′ . In particular, when {Mp} is the Gevrey sequence (Mp = p! s, s > 1) we recover some previously observed results. Furthermore, we consider wave-front sets for modulation spaces in the same setting, and prove the invariance property related to the Fourier-Lebesgue type wave-front sets. PB - Beograd : Académie Serbe des sciences et des arts C3 - Bulletin T.CLI de l’Académie serbe des sciences et des arts T1 - Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces SP - 81 EP - 111 UR - https://hdl.handle.net/21.15107/rcub_dais_9085 ER -
@conference{ author = "Teofanov, Nenad", year = "2018", abstract = "We define and study wave-front sets for weighted Fourier-Lebesgue spaces when the weights are moderate with respect to associated functions for general sequences {Mp} which satisfy Komatsu’s conditions (M.1) − (M.3)′ . In particular, when {Mp} is the Gevrey sequence (Mp = p! s, s > 1) we recover some previously observed results. Furthermore, we consider wave-front sets for modulation spaces in the same setting, and prove the invariance property related to the Fourier-Lebesgue type wave-front sets.", publisher = "Beograd : Académie Serbe des sciences et des arts", journal = "Bulletin T.CLI de l’Académie serbe des sciences et des arts", title = "Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces", pages = "81-111", url = "https://hdl.handle.net/21.15107/rcub_dais_9085" }
Teofanov, N.. (2018). Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces. in Bulletin T.CLI de l’Académie serbe des sciences et des arts Beograd : Académie Serbe des sciences et des arts., 81-111. https://hdl.handle.net/21.15107/rcub_dais_9085
Teofanov N. Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces. in Bulletin T.CLI de l’Académie serbe des sciences et des arts. 2018;:81-111. https://hdl.handle.net/21.15107/rcub_dais_9085 .
Teofanov, Nenad, "Wave-front sets in non-quasianalytic setting for FourierLebesgue and modulation spaces" in Bulletin T.CLI de l’Académie serbe des sciences et des arts (2018):81-111, https://hdl.handle.net/21.15107/rcub_dais_9085 .