DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites

Authorized Users Only
2020
Authors
Pantić, Tijana
Milanović, Igor
Lukić, Miodrag J.
Grbović Novaković, Jasmina
Kurko, Sandra
Biliškov, Nikola
Milošević Govedarović, Sanja
Article (Published version)
Metadata
Show full item record
Abstract
The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure... or chemical composition of the material.

Keywords:
composites / desorption properties / kinetic analysis / mechanical milling / MgH / WO
Source:
International Journal of Hydrogen Energy, 2020, 45, 14, 7901-7911
Publisher:
  • Elsevier
Funding / projects:
  • Synthesis, processing and characterization of nanostructured materials for application in the field of energy, mechanical engineering, environmental protection and biomedicine (RS-45012)
  • Environmental Protection and Energy Efficiency Fund of the Republic of Croatia and the Croatian Science Foundation, project no. PKP-2016-06-4480
Note:
  • Peer-reviewed manuscript: https://hdl.handle.net/21.15107/rcub_dais_6455
Related info:
  • Version of
    https://hdl.handle.net/21.15107/rcub_dais_6455

DOI: 10.1016/j.ijhydene.2019.07.167

ISBN: 0360-3199

WoS: 000521110300005

Scopus: 2-s2.0-85070554967
[ Google Scholar ]
3
2
Handle
https://hdl.handle.net/21.15107/rcub_dais_8963
URI
http://www.sciencedirect.com/science/article/pii/S0360319919327685
https://dais.sanu.ac.rs/123456789/8963
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Pantić, Tijana
AU  - Milanović, Igor
AU  - Lukić, Miodrag J.
AU  - Grbović Novaković, Jasmina
AU  - Kurko, Sandra
AU  - Biliškov, Nikola
AU  - Milošević Govedarović, Sanja
PY  - 2020
UR  - http://www.sciencedirect.com/science/article/pii/S0360319919327685
UR  - https://dais.sanu.ac.rs/123456789/8963
AB  - The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material.
PB  - Elsevier
T2  - International Journal of Hydrogen Energy
T1  - The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites
SP  - 7901
EP  - 7911
VL  - 45
IS  - 14
DO  - 10.1016/j.ijhydene.2019.07.167
UR  - https://hdl.handle.net/21.15107/rcub_dais_8963
ER  - 
@article{
author = "Pantić, Tijana and Milanović, Igor and Lukić, Miodrag J. and Grbović Novaković, Jasmina and Kurko, Sandra and Biliškov, Nikola and Milošević Govedarović, Sanja",
year = "2020",
abstract = "The influence of different milling conditions obtained using two high-energy mills on hydrogen desorption from MgH2-WO3 composites was investigated. The morphology, particle and crystallite size were studied as a function of milling speed, vial's volume, and ball-to-powder ratio. The vial's fill level, the number, and type of milling balls and additive's content kept constant. Changes in morphology and microstructure were correlated to desorption properties of materials. Higher milling speed reduced particle size but, there is no significant crystallite size reduction. On the other hand, additive distribution is similar regardless of the energy input. It has been noticed that different energy input on milling blend, which is the result of combined effects of above-mentioned factors, reflects on desorption temperature but not on the kinetics of desorption. In fact, desorption mechanism changes from 2D to 3D growth with constant nucleation rate, despite obtained changes in microstructure or chemical composition of the material.",
publisher = "Elsevier",
journal = "International Journal of Hydrogen Energy",
title = "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites",
pages = "7901-7911",
volume = "45",
number = "14",
doi = "10.1016/j.ijhydene.2019.07.167",
url = "https://hdl.handle.net/21.15107/rcub_dais_8963"
}
Pantić, T., Milanović, I., Lukić, M. J., Grbović Novaković, J., Kurko, S., Biliškov, N.,& Milošević Govedarović, S.. (2020). The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites. in International Journal of Hydrogen Energy
Elsevier., 45(14), 7901-7911.
https://doi.org/10.1016/j.ijhydene.2019.07.167
https://hdl.handle.net/21.15107/rcub_dais_8963
Pantić T, Milanović I, Lukić MJ, Grbović Novaković J, Kurko S, Biliškov N, Milošević Govedarović S. The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites. in International Journal of Hydrogen Energy. 2020;45(14):7901-7911.
doi:10.1016/j.ijhydene.2019.07.167
https://hdl.handle.net/21.15107/rcub_dais_8963 .
Pantić, Tijana, Milanović, Igor, Lukić, Miodrag J., Grbović Novaković, Jasmina, Kurko, Sandra, Biliškov, Nikola, Milošević Govedarović, Sanja, "The influence of mechanical milling parameters on hydrogen desorption from Mgh2-Wo3 composites" in International Journal of Hydrogen Energy, 45, no. 14 (2020):7901-7911,
https://doi.org/10.1016/j.ijhydene.2019.07.167 .,
https://hdl.handle.net/21.15107/rcub_dais_8963 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB