DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application

Thumbnail
2016
892.pdf (58.27Kb)
Authors
Gajić Krstajić, Ljiljana
Zabinski, Piotr
Radmilović, Velimir R.
Ercius, Peter
Krstajić Pajić, Mila
Lačnjevac, Uroš
Krstajić, Nedeljko
Elezović, Nevenka
Conference object (Published version)
Metadata
Show full item record
Abstract
Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. Acknowledgement...s: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054. The authors would like to acknowledge networking support by the COST Action MP1407.

Keywords:
tungsten carbide / fuel cells / Pd nanocatalysts
Source:
Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016, 2016, 71-71
Publisher:
  • Belgrade : Materials Research Society of Serbia
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)

ISBN: 978-86-919111-1-9

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_895
URI
https://dais.sanu.ac.rs/123456789/895
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Gajić Krstajić, Ljiljana
AU  - Zabinski, Piotr
AU  - Radmilović, Velimir R.
AU  - Ercius, Peter
AU  - Krstajić Pajić, Mila
AU  - Lačnjevac, Uroš
AU  - Krstajić, Nedeljko
AU  - Elezović, Nevenka
PY  - 2016
UR  - https://dais.sanu.ac.rs/123456789/895
AB  - Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. 

Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.
The authors would like to acknowledge networking support by the COST Action MP1407.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
T1  - Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application
SP  - 71
EP  - 71
UR  - https://hdl.handle.net/21.15107/rcub_dais_895
ER  - 
@conference{
author = "Gajić Krstajić, Ljiljana and Zabinski, Piotr and Radmilović, Velimir R. and Ercius, Peter and Krstajić Pajić, Mila and Lačnjevac, Uroš and Krstajić, Nedeljko and Elezović, Nevenka",
year = "2016",
abstract = "Tungsten carbide was prepared by polycondensation of resorcinol and formaldehyde in the presence cetyltrimethylammonium bromide (CTABr) surfactant. Pd nanocatalyst at this support was synthesized by borohydride reduction method. The obtained materials were characterized by XRD, HRTEM, EELS, XPS and electrochemical measurements. TEM analysis revealed Pd nanoparticles size in the range of a few nanometers, even the clusters of Pd atoms. X-Ray Photoelectron Spectroscopy was applied to determine surface composition of the substrates. The presence of palladium based species was revealed. The catalytic activity for the hydrogen oxidation reaction and oxygen reduction were investigated in 0.5 M HClO4 by cyclic voltammetry and linear sweep voltammetry at the rotating disc electrode. The catalysts’ activities were compared to the carbon supported Pd nanoparticles (Vulcan XC 72). WC supported Pd nanoparticles have shown higher CO tolerance, compared even to Pt based catalyst. 

Acknowledgements: This work was financially supported by Ministry of Education, Science and Technological Development, Republic of Serbia, contract No. 172054.
The authors would like to acknowledge networking support by the COST Action MP1407.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016",
title = "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application",
pages = "71-71",
url = "https://hdl.handle.net/21.15107/rcub_dais_895"
}
Gajić Krstajić, L., Zabinski, P., Radmilović, V. R., Ercius, P., Krstajić Pajić, M., Lačnjevac, U., Krstajić, N.,& Elezović, N.. (2016). Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016
Belgrade : Materials Research Society of Serbia., 71-71.
https://hdl.handle.net/21.15107/rcub_dais_895
Gajić Krstajić L, Zabinski P, Radmilović VR, Ercius P, Krstajić Pajić M, Lačnjevac U, Krstajić N, Elezović N. Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application. in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016. 2016;:71-71.
https://hdl.handle.net/21.15107/rcub_dais_895 .
Gajić Krstajić, Ljiljana, Zabinski, Piotr, Radmilović, Velimir R., Ercius, Peter, Krstajić Pajić, Mila, Lačnjevac, Uroš, Krstajić, Nedeljko, Elezović, Nevenka, "Synthesis and characterization of Pd nanocatalyst at tungsten carbide based support for fuel cells application" in Programme and The Book of Abstracts / Eighteenth Annual Conference YUCOMAT 2016, Herceg Novi, September 5-10, 2016 (2016):71-71,
https://hdl.handle.net/21.15107/rcub_dais_895 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB