Synthesis of PLGA /nano-ZnO composite particles for biomedical applications

2015
Authors
Stanković, Ana
Lukić, Miodrag J.

Jović, Maja

Sezen, Meltem

Milenković, Marina

Stevanović, Magdalena

Conference object (Published version)
Metadata
Show full item recordAbstract
Copolymer poly (DL-lactide-co-glycolide) (PLGA), due of its biodegradable and biocompatible nature, is widely used in various medical applications; controlled release of delivering drugs, carriers in the tissue engineering, etc. On the other hand, zinc oxide (ZnO) is extensively used in medicine and pharmacy for personal care products, as well as in biomedical materials like dental composites, as a material for treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments, etc. In this research we have dealt with a procedure to prepare particles of poly (lactide-co-glycolide) and nano zinc oxide (PLGA/nano-ZnO). Nano-ZnO has been synthesized using a microwave synthesis method and additionally immobilized within PLGA by physicochemical solvent/non-solvent method. Firstly, ZnO has been dispersed in acetone and then additionally added dropwise in the PLGA/ethyl acetate (PLGA/nano-ZnO(EtAc) or PLGA/acetone (PLGA/nano-ZnO(Ac)) solutions, respecti...vely. The as-prepared dispersions were dried in air atmosphere for 24 h.
The characterization of the prepared samples was performed using X-ray powder diffraction (XRPD) method for the structure properties, field emission scanning electron microscopy (FE SEM) for the investigation of particles morphology, as well as Malvern’s Mastersizer instrument for particle size distribution. DTA-TG measurements were performed in order to investigate the samples thermal stability and mass loss percentage. The antimicrobial behavior of the synthesized PLGA/nano-ZnO particles was tested against gram-negative and gram-positive bacteria cultures and also against Candida Albicans, diploid fungus.
Keywords:
PLGA / zinc oxide / biomedical materialsSource:
Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK, 2015Publisher:
- Rovinj : International Association of Physical Chemists
Funding / projects:
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Stanković, Ana AU - Lukić, Miodrag J. AU - Jović, Maja AU - Sezen, Meltem AU - Milenković, Marina AU - Stevanović, Magdalena PY - 2015 UR - https://dais.sanu.ac.rs/123456789/857 AB - Copolymer poly (DL-lactide-co-glycolide) (PLGA), due of its biodegradable and biocompatible nature, is widely used in various medical applications; controlled release of delivering drugs, carriers in the tissue engineering, etc. On the other hand, zinc oxide (ZnO) is extensively used in medicine and pharmacy for personal care products, as well as in biomedical materials like dental composites, as a material for treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments, etc. In this research we have dealt with a procedure to prepare particles of poly (lactide-co-glycolide) and nano zinc oxide (PLGA/nano-ZnO). Nano-ZnO has been synthesized using a microwave synthesis method and additionally immobilized within PLGA by physicochemical solvent/non-solvent method. Firstly, ZnO has been dispersed in acetone and then additionally added dropwise in the PLGA/ethyl acetate (PLGA/nano-ZnO(EtAc) or PLGA/acetone (PLGA/nano-ZnO(Ac)) solutions, respectively. The as-prepared dispersions were dried in air atmosphere for 24 h. The characterization of the prepared samples was performed using X-ray powder diffraction (XRPD) method for the structure properties, field emission scanning electron microscopy (FE SEM) for the investigation of particles morphology, as well as Malvern’s Mastersizer instrument for particle size distribution. DTA-TG measurements were performed in order to investigate the samples thermal stability and mass loss percentage. The antimicrobial behavior of the synthesized PLGA/nano-ZnO particles was tested against gram-negative and gram-positive bacteria cultures and also against Candida Albicans, diploid fungus. PB - Rovinj : International Association of Physical Chemists C3 - Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK T1 - Synthesis of PLGA /nano-ZnO composite particles for biomedical applications UR - https://hdl.handle.net/21.15107/rcub_dais_857 ER -
@conference{ author = "Stanković, Ana and Lukić, Miodrag J. and Jović, Maja and Sezen, Meltem and Milenković, Marina and Stevanović, Magdalena", year = "2015", abstract = "Copolymer poly (DL-lactide-co-glycolide) (PLGA), due of its biodegradable and biocompatible nature, is widely used in various medical applications; controlled release of delivering drugs, carriers in the tissue engineering, etc. On the other hand, zinc oxide (ZnO) is extensively used in medicine and pharmacy for personal care products, as well as in biomedical materials like dental composites, as a material for treatment of a variety of skin irritations, to enhance the antibacterial activity of different medicaments, etc. In this research we have dealt with a procedure to prepare particles of poly (lactide-co-glycolide) and nano zinc oxide (PLGA/nano-ZnO). Nano-ZnO has been synthesized using a microwave synthesis method and additionally immobilized within PLGA by physicochemical solvent/non-solvent method. Firstly, ZnO has been dispersed in acetone and then additionally added dropwise in the PLGA/ethyl acetate (PLGA/nano-ZnO(EtAc) or PLGA/acetone (PLGA/nano-ZnO(Ac)) solutions, respectively. The as-prepared dispersions were dried in air atmosphere for 24 h. The characterization of the prepared samples was performed using X-ray powder diffraction (XRPD) method for the structure properties, field emission scanning electron microscopy (FE SEM) for the investigation of particles morphology, as well as Malvern’s Mastersizer instrument for particle size distribution. DTA-TG measurements were performed in order to investigate the samples thermal stability and mass loss percentage. The antimicrobial behavior of the synthesized PLGA/nano-ZnO particles was tested against gram-negative and gram-positive bacteria cultures and also against Candida Albicans, diploid fungus.", publisher = "Rovinj : International Association of Physical Chemists", journal = "Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK", title = "Synthesis of PLGA /nano-ZnO composite particles for biomedical applications", url = "https://hdl.handle.net/21.15107/rcub_dais_857" }
Stanković, A., Lukić, M. J., Jović, M., Sezen, M., Milenković, M.,& Stevanović, M.. (2015). Synthesis of PLGA /nano-ZnO composite particles for biomedical applications. in Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK Rovinj : International Association of Physical Chemists.. https://hdl.handle.net/21.15107/rcub_dais_857
Stanković A, Lukić MJ, Jović M, Sezen M, Milenković M, Stevanović M. Synthesis of PLGA /nano-ZnO composite particles for biomedical applications. in Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK. 2015;. https://hdl.handle.net/21.15107/rcub_dais_857 .
Stanković, Ana, Lukić, Miodrag J., Jović, Maja, Sezen, Meltem, Milenković, Marina, Stevanović, Magdalena, "Synthesis of PLGA /nano-ZnO composite particles for biomedical applications" in Joint Event 4th World Conference on Physico-Chemical Methods in Drug Discovery and Development (PCMDDD-4) and 1st World Conference on ADMET and DMPK (2015), https://hdl.handle.net/21.15107/rcub_dais_857 .