DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Hydrogen storage in a layered flexible [Ni2(btc)(en)2]n coordination polymer

Thumbnail
2016
10.1016-j.ijhydene.2016.08.203.pdf (705.8Kb)
Authors
Blagojević, Vladimir A.
Lukić, Vladimir
Begović, Nebojša N.
Maričić, Aleksa
Minić, Dragica M.
Article (Accepted Version)
Metadata
Show full item record
Abstract
[Ni2(btc)(en)2]n coordination polymer exhibits a layered two-dimensional structure with weak interaction between the layers. Correlation of experimental measurements, DFT calculations and molecular simulations demonstrated that its structural features, primarily the inherent flexibility of the layered polymeric structure, lead to improved hydrogen storage performance at room temperature, due to significant enhancement in isosteric heats of hydrogen adsorption. Volumetric measurements of hydrogen adsorption at room temperature show up to 0.3 wt.% hydrogen absorbed at 303 K and 2.63 bar of hydrogen pressure, with isosteric heats of adsorption of about 12.5 kJ mol−1. Predicted performance at room temperature is 1.8 wt.% at 48 bar and 3.5 wt.% at 100 bar, better than both MOF-5 and NU-100, with calculated values of isosteric heats for adsorption of hydrogen in 8–13 kJ mol−1 range at both 77 K and 303 K. Grand canonical Monte Carlo calculations show that this material, at 77 K, exhibits gra...vimetric hydrogen densities of more than 10 wt.% (up to 8.3 wt.% excess) with the corresponding volumetric density of at least 66 gL−1, which is comparable to MOF-5, but achieved with considerably smaller surface area of about 2500 m2 g−1. This study shows that layered two-dimensional MOFs could be a step towards MOF systems with significantly higher isosteric heats of adsorption, which could provide better room temperature hydrogen storage capabilities.

Keywords:
metal-organic frameworks / hydrogen storage / molecular simulations / DFT calculations / coordination polymers
Source:
International Journal of Hydrogen Energy, 2016, 41, 47, 22171-22181
Projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
Note:
  • This is the peer reviewed version of the following article: Blagojević, V.A., Lukić, V., Begović, N.N., Maričić, A.M., Minić, D.M., 2016, “Hydrogen storage in a layered flexible Ni2(btc)(en)2n coordination polymer”, International Journal of Hydrogen Energy, http://dx.doi.org/10.1016/j.ijhydene.2016.08.203

DOI: 10.1016/j.ijhydene.2016.08.203

ISSN: 0167-2738

WoS: 000389786500034

Scopus: 2-s2.0-84994532944
[ Google Scholar ]
9
8
URI
http://dais.sanu.ac.rs/123456789/854
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences SASA

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB