DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics

Thumbnail
2015
828.pdf (388.2Kb)
Authors
Marković, Smilja
Stanković, Ana
Veselinović, Ljiljana
Belošević Čavor, Jelena
Škapin, Srečo Davor
Stojadinović, Stevan
Rac, Vladislav
Lević, Steva
Janković Častvan, Ivona
Uskoković, Dragan
Conference object (Published version)
Metadata
Show full item record
Abstract
Zinc oxide is one of the most studied materials due to its potential applications in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO could be used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or wide-band gap semiconductors. Intrinsic defects, such as vacancies, interstitials and antisites, in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, understanding the behavior of intrinsic defects during densification of ZnO ceramics as well as correlation of the defects with band gap energy of final product is important to its application in opto-electronic devices. In this study, the influence of point defects concentration on the densification process and optical properties of ZnO sintered ceramics was investigated. To obtain ZnO sintered ceramics with variety of point defects concentration we employed two starting powders with a different ...crystal structure ordering, as well different morphology and specific surface area. Sinterability of the powders was investigated by thermo mechanical analyzer; shrinkage data, collected in axial (h) direction during non-isothermal sintering with heating rates of 5, 10 and 20 °/min, were used to calculate activation energy of sintering process. Sintering of uniaxially pressed (P = 100 MPa) cylindrical compacts (ø 6 mm and h ≈ 3 mm) were done in air atmosphere by heating rate of 10 °/min up to 1100 and 1200 °C, and dwell time of 2 h. To study a crystal structure of the sintered samples XRD and Raman spectroscopy were used, for microstructural investigation field emission scanning electron micrographs were recorded while optical properties were determined by UV-Vis diffuse reflectance and photoluminescence spectroscopy. A detailed study shows that point defect strongly influenced densification process as well optical properties. Sintered ZnO ceramic with a high crystal defect concentration and nanosized grains shows band gap energy of about 2 eV while band gap energy increased with a decrease of defect concentration.

Keywords:
zinc oxide / sintering / optical properties
Source:
Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015, 2015, 61-61
Publisher:
  • Belgrade : Materials Research Society of Serbia
Projects:
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)
[ Google Scholar ]
URI
http://dais.sanu.ac.rs/123456789/831
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Marković, Smilja
AU  - Stanković, Ana
AU  - Veselinović, Ljiljana
AU  - Belošević Čavor, Jelena
AU  - Škapin, Srečo Davor
AU  - Stojadinović, Stevan
AU  - Rac, Vladislav
AU  - Lević, Steva
AU  - Janković Častvan, Ivona
AU  - Uskoković, Dragan
PY  - 2015
UR  - http://dais.sanu.ac.rs/123456789/831
AB  - Zinc oxide is one of the most studied materials due to its potential applications in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO could be used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or wide-band gap semiconductors. Intrinsic defects, such as vacancies, interstitials and antisites, in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, understanding the behavior of intrinsic defects during densification of ZnO ceramics as well as correlation of the defects with band gap energy of final product is important to its application in opto-electronic devices.
In this study, the influence of point defects concentration on the densification process and optical properties of ZnO sintered ceramics was investigated. To obtain ZnO sintered ceramics with variety of point defects concentration we employed two starting powders with a different crystal structure ordering, as well different morphology and specific surface area. Sinterability of the powders was investigated by thermo mechanical analyzer; shrinkage data, collected in axial (h) direction during non-isothermal sintering with heating rates of 5, 10 and 20 °/min, were used to calculate activation energy of sintering process. Sintering of uniaxially pressed (P = 100 MPa) cylindrical compacts (ø 6 mm and h ≈ 3 mm) were done in air atmosphere by heating rate of 10 °/min up to 1100 and 1200 °C, and dwell time of 2 h. To study a crystal structure of the sintered samples XRD and Raman spectroscopy were used, for microstructural investigation field emission scanning electron micrographs were recorded while optical properties were determined by UV-Vis diffuse reflectance and photoluminescence spectroscopy. A detailed study shows that point defect strongly influenced densification process as well optical properties. Sintered ZnO ceramic with a high crystal defect concentration and nanosized grains shows band gap energy of about 2 eV while band gap energy increased with a decrease of defect concentration.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015
T1  - Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics
SP  - 61
EP  - 61
ER  - 
@conference{
author = "Marković, Smilja and Stanković, Ana and Veselinović, Ljiljana and Belošević Čavor, Jelena and Škapin, Srečo Davor and Stojadinović, Stevan and Rac, Vladislav and Lević, Steva and Janković Častvan, Ivona and Uskoković, Dragan",
year = "2015",
url = "http://dais.sanu.ac.rs/123456789/831",
abstract = "Zinc oxide is one of the most studied materials due to its potential applications in electronics, optoelectronics and spintronics. In the forms of single crystal and thin-film ZnO could be used as UV and blue light emitter, while sintered ZnO-based ceramics are important as varistors, thermistors or wide-band gap semiconductors. Intrinsic defects, such as vacancies, interstitials and antisites, in the crystal structure of a ZnO strongly influenced its electrical and optical properties. Thus, understanding the behavior of intrinsic defects during densification of ZnO ceramics as well as correlation of the defects with band gap energy of final product is important to its application in opto-electronic devices.
In this study, the influence of point defects concentration on the densification process and optical properties of ZnO sintered ceramics was investigated. To obtain ZnO sintered ceramics with variety of point defects concentration we employed two starting powders with a different crystal structure ordering, as well different morphology and specific surface area. Sinterability of the powders was investigated by thermo mechanical analyzer; shrinkage data, collected in axial (h) direction during non-isothermal sintering with heating rates of 5, 10 and 20 °/min, were used to calculate activation energy of sintering process. Sintering of uniaxially pressed (P = 100 MPa) cylindrical compacts (ø 6 mm and h ≈ 3 mm) were done in air atmosphere by heating rate of 10 °/min up to 1100 and 1200 °C, and dwell time of 2 h. To study a crystal structure of the sintered samples XRD and Raman spectroscopy were used, for microstructural investigation field emission scanning electron micrographs were recorded while optical properties were determined by UV-Vis diffuse reflectance and photoluminescence spectroscopy. A detailed study shows that point defect strongly influenced densification process as well optical properties. Sintered ZnO ceramic with a high crystal defect concentration and nanosized grains shows band gap energy of about 2 eV while band gap energy increased with a decrease of defect concentration.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015",
title = "Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics",
pages = "61-61"
}
Marković S, Stanković A, Veselinović L, Belošević Čavor J, Škapin SD, Stojadinović S, Rac V, Lević S, Janković Častvan I, Uskoković D. Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics. Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015. 2015;:61-61
Marković, S., Stanković, A., Veselinović, L., Belošević Čavor, J., Škapin, S. D., Stojadinović, S., Rac, V., Lević, S., Janković Častvan, I.,& Uskoković, D. (2015). Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics.
Programme and The Book of Abstracts / Seventeenth Annual Conference YUCOMAT 205, Herceg Novi, August 31– September 4, 2015Belgrade : Materials Research Society of Serbia., null, 61-61. 
Marković Smilja, Stanković Ana, Veselinović Ljiljana, Belošević Čavor Jelena, Škapin Srečo Davor, Stojadinović Stevan, Rac Vladislav, Lević Steva, Janković Častvan Ivona, Uskoković Dragan, "Influence of Point Defects Concentration on Densification Process and Optical Properties of Sintered ZnO Ceramics" null (2015):61-61

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB