DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • Radovi istraživača pre dolaska u ITN SANU
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • Radovi istraživača pre dolaska u ITN SANU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multifunctionalized Self-supported (Nano) Membranes as Integrated Platform for Plasmonic Metamaterials

Thumbnail
2013
780.pdf (1018.Kb)
Authors
Jakšić, Zoran
Radovanović, Filip
Nastasović, Aleksandra
Matović, Jovan
Conference object (Published version)
Metadata
Show full item record
Abstract
We considered the possibility to fabricate multifunctional nanocomposite membranes as a platform for plasmonic metamaterials, simultaneously incorporating pores, built-in functional groups and active nanoparticles. To this purpose we combined lamination and inclusion of nanofillers into the membrane host. For the basic material we chose macroporous crosslinked copolymers based on glycidyl methacrylate (GMA). The epoxy group present in GMA molecule is readily transformed into various functional groups that further serve as affinity enhancers, ensuring the usability of the membranes as pre-concentrators of selected agents in plasmonic sensors. To form GMA-based membranes we used a recently proposed method combining the traditional immersion precipitation with photopolymerization and crosslinking of functional monomers. Further functionalization is obtained by in-situ formation of noble metal nanoparticles directly within the GMA host. In this way membranes with simultaneous plasmonic, ad...sorbent and catalytic functionality are obtained. We considered the use of the our structures for plasmonic chemical sensors where separator, pre-concentrator and binding agent are integrated with the plasmonic crystal, as well as for plasmonic enhancement of photocatalytic reactions in microreactors. Our approach gives a highly tailorable element compatible with microelectromechanical systems (MEMS) technologies and readily transferable across platforms.

Keywords:
nanocomposite membranes / MEMS / glycidyl methacrylate / plasmonics
Source:
Progress in Electromagnetics Research Symposium, PIERS 2013, 12-15 August 2013, Stockholm, Sweden, 2013, 1016-1020
Publisher:
  • Cambrridge, MA : The Electromagnetics Academy
Projects:
  • Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection (RS-32008)
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)
[ Google Scholar ]
URI
http://dais.sanu.ac.rs/123456789/783
Collections
  • Radovi istraživača pre dolaska u ITN SANU
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Jakšić, Zoran
AU  - Radovanović, Filip
AU  - Nastasović, Aleksandra
AU  - Matović, Jovan
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/783
AB  - We considered the possibility to fabricate multifunctional nanocomposite membranes as a platform for plasmonic metamaterials, simultaneously incorporating pores, built-in functional groups and active nanoparticles. To this purpose we combined lamination and inclusion of nanofillers into the membrane host. For the basic material we chose macroporous crosslinked copolymers based on glycidyl methacrylate (GMA). The epoxy group present in GMA molecule is readily transformed into various functional groups that further serve as affinity enhancers, ensuring the usability of the membranes as pre-concentrators of selected agents in plasmonic sensors. To form GMA-based membranes we used a recently proposed method combining the traditional immersion precipitation with photopolymerization and crosslinking of functional monomers. Further functionalization is obtained by in-situ formation of noble metal nanoparticles directly within the GMA host. In this way membranes with simultaneous plasmonic, adsorbent and catalytic functionality are obtained. We considered the use of the our structures for plasmonic chemical sensors where separator, pre-concentrator and binding agent are integrated with the plasmonic crystal, as well as for plasmonic enhancement of photocatalytic reactions in microreactors. Our approach gives a highly tailorable element compatible with microelectromechanical systems (MEMS) technologies and readily transferable across platforms.
PB  - Cambrridge, MA : The Electromagnetics Academy
C3  - Progress in Electromagnetics Research Symposium, PIERS 2013, 12-15 August 2013, Stockholm, Sweden
T1  - Multifunctionalized Self-supported (Nano) Membranes as Integrated Platform for Plasmonic Metamaterials
SP  - 1016
EP  - 1020
ER  - 
@conference{
author = "Jakšić, Zoran and Radovanović, Filip and Nastasović, Aleksandra and Matović, Jovan",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/783",
abstract = "We considered the possibility to fabricate multifunctional nanocomposite membranes as a platform for plasmonic metamaterials, simultaneously incorporating pores, built-in functional groups and active nanoparticles. To this purpose we combined lamination and inclusion of nanofillers into the membrane host. For the basic material we chose macroporous crosslinked copolymers based on glycidyl methacrylate (GMA). The epoxy group present in GMA molecule is readily transformed into various functional groups that further serve as affinity enhancers, ensuring the usability of the membranes as pre-concentrators of selected agents in plasmonic sensors. To form GMA-based membranes we used a recently proposed method combining the traditional immersion precipitation with photopolymerization and crosslinking of functional monomers. Further functionalization is obtained by in-situ formation of noble metal nanoparticles directly within the GMA host. In this way membranes with simultaneous plasmonic, adsorbent and catalytic functionality are obtained. We considered the use of the our structures for plasmonic chemical sensors where separator, pre-concentrator and binding agent are integrated with the plasmonic crystal, as well as for plasmonic enhancement of photocatalytic reactions in microreactors. Our approach gives a highly tailorable element compatible with microelectromechanical systems (MEMS) technologies and readily transferable across platforms.",
publisher = "Cambrridge, MA : The Electromagnetics Academy",
journal = "Progress in Electromagnetics Research Symposium, PIERS 2013, 12-15 August 2013, Stockholm, Sweden",
title = "Multifunctionalized Self-supported (Nano) Membranes as Integrated Platform for Plasmonic Metamaterials",
pages = "1016-1020"
}
Jakšić Z, Radovanović F, Nastasović A, Matović J. Multifunctionalized Self-supported (Nano) Membranes as Integrated Platform for Plasmonic Metamaterials. Progress in Electromagnetics Research Symposium, PIERS 2013, 12-15 August 2013, Stockholm, Sweden. 2013;:1016-1020
Jakšić, Z., Radovanović, F., Nastasović, A.,& Matović, J. (2013). Multifunctionalized Self-supported (Nano) Membranes as Integrated Platform for Plasmonic Metamaterials.
Progress in Electromagnetics Research Symposium, PIERS 2013, 12-15 August 2013, Stockholm, SwedenCambrridge, MA : The Electromagnetics Academy., null, 1016-1020. 
Jakšić Zoran, Radovanović Filip, Nastasović Aleksandra, Matović Jovan, "Multifunctionalized Self-supported (Nano) Membranes as Integrated Platform for Plasmonic Metamaterials" null (2013):1016-1020

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB