DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • Radovi istraživača pre dolaska u ITN SANU
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • Radovi istraživača pre dolaska u ITN SANU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate

Authorized Users Only
2014
Authors
Radovanović, Filip
Nastasović, Aleksandra
Tomković, Tanja
Vasiljević Radović, Dana
Nešić, A.
Veličković, Sava
Onjia, Antonije
Article (Published version)
Metadata
Show full item record
Abstract
Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.
Keywords:
membrane formation / photoirradiation / membrane adsorber / epoxide functionality / amination
Source:
Reactive and Functional Polymers, 2014, 77, 1-10
Publisher:
  • Elsevier
Projects:
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)
  • Micro- Nanosystems and Sensors for Electric Power and Process Industry and Environmental Protection (RS-32008)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)
Note:
  • Supplementary material: http://dais.sanu.ac.rs/handle/123456789/4728

DOI: 10.1016/j.reactfunctpolym.2014.01.007

ISSN: 1381-5148

WoS: 000334140000001

Scopus: 2-s2.0-84894573179
[ Google Scholar ]
11
11
URI
http://dais.sanu.ac.rs/123456789/772
Collections
  • Radovi istraživača pre dolaska u ITN SANU
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Radovanović, Filip
AU  - Nastasović, Aleksandra
AU  - Tomković, Tanja
AU  - Vasiljević Radović, Dana
AU  - Nešić, A.
AU  - Veličković, Sava
AU  - Onjia, Antonije
PY  - 2014
UR  - http://dais.sanu.ac.rs/123456789/772
AB  - Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.
PB  - Elsevier
T2  - Reactive and Functional Polymers
T1  - Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate
SP  - 1
EP  - 10
VL  - 77
DO  - 10.1016/j.reactfunctpolym.2014.01.007
ER  - 
@article{
author = "Radovanović, Filip and Nastasović, Aleksandra and Tomković, Tanja and Vasiljević Radović, Dana and Nešić, A. and Veličković, Sava and Onjia, Antonije",
year = "2014",
url = "http://dais.sanu.ac.rs/123456789/772",
abstract = "Asymmetric polyethersulfone membranes with submicron particles comprising crosslinked glycidyl methacrylate copolymer were prepared by a combination of a traditional immersion precipitation process for making membranes with photopolymerization and crosslinking of functional monomers included in the casting solution. As the concentration of polymerizable monomers increased the original macrovoid structure was replaced by a hybrid morphology with microglobules typical of macroporous methacrylate adsorbers embedded within microporous structure with no significant effects on water permeability. The epoxide groups present in glycidyl methacrylate copolymer were transformed into amine functionalities by ring opening under alkaline conditions. Permeation of Orange G solution at low transmembrane pressures was used to demonstrate suitability of these novel membranes for membrane adsorption.",
publisher = "Elsevier",
journal = "Reactive and Functional Polymers",
title = "Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate",
pages = "1-10",
volume = "77",
doi = "10.1016/j.reactfunctpolym.2014.01.007"
}
Radovanović F, Nastasović A, Tomković T, Vasiljević Radović D, Nešić A, Veličković S, Onjia A. Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate. Reactive and Functional Polymers. 2014;77:1-10
Radovanović, F., Nastasović, A., Tomković, T., Vasiljević Radović, D., Nešić, A., Veličković, S.,& Onjia, A. (2014). Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate.
Reactive and Functional PolymersElsevier., 77, 1-10. 
https://doi.org/10.1016/j.reactfunctpolym.2014.01.007
Radovanović Filip, Nastasović Aleksandra, Tomković Tanja, Vasiljević Radović Dana, Nešić A., Veličković Sava, Onjia Antonije, "Novel membrane adsorbers incorporating functionalized polyglycidyl methacrylate" 77 (2014):1-10,
https://doi.org/10.1016/j.reactfunctpolym.2014.01.007 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB