DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of the preparation of novel polymer/clay nanocomposites

Thumbnail
2019
Markovic-5CSCS-2019.pdf (968.5Kb)
Authors
Marković, Bojana
Stefanović, Ivan S.
Popović, Aleksandar R.
Ignjatović, Nenad
Nastasović, Aleksandra
Conference object (Published version)
Metadata
Show full item record
Abstract
Recent advances in material technologies have resulted in the preparation of novel polymer/clay composites with improved thermal, mechanical, optoelectronic/ magnetic properties and increased biodegradability [1]. In this study, six samples of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) nanocomposites with organically-modified montmorillonite clay Cloisite 30B® (C30B), were prepared via suspension copolymerization. In order to obtain nanocomposites with fine spherical beads of regular shape and satisfying thermal stability the optimization of the synthesis conditions was performed. Firstly, the influence of the poly(N-vinyl pyrrolidone) (PVP) quantity in the aqueous phase was varied (1, 3 and 5 wt.%) at a constant stirring rate of 250 rpm and constant clay content C30B (10 wt.%). In the second phase of the optimization of the preparation, samples with a constant composition of the composite reaction mixture (5 wt.% PVP and 10 wt.% C30B) at a stirring rate of 25...0, 325 and 400 rpm, were prepared. According to the obtained results, it was concluded that the optimal conditions for preparation of these composites are 5 wt.% of PVP and 400 rpm. The prepared nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in air. The structure of the prepared nanocomposites was confirmed with FTIR spectroscopy. According to the obtained SEM microphotographs the fine spherical beads, with desired size and homogeneous morphology, were prepared. Furthermore, SEM analysis was also showed that clay nanoparticles are homogeneously dispersed both inside surface and cross-section area. The incorporation of C30B clay increased the thermal stability of the prepared polymer/clay nanocomposites in comparison to the pure PGME copolymer.

Keywords:
polymer/clay nanocomposites / poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) / Cloisite 30B® (C30B) / copolymerization
Source:
Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia, 2019, 114-114
Publisher:
  • Belgrade : Institute for Multidisciplinary Research
Funding / projects:
  • Advanced technologies for monitoring and environmental protection from chemical pollutants and radiation burden (RS-43009)
  • Synthesis and characterization of novel functional polymers and polymeric nanocomposites (RS-172062)
  • The study of physicochemical and biochemical processes in living environment that have impacts on pollution and the investigation of possibilities for minimizing the consequences (RS-172001)
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)

ISBN: 978-86-80109-22-0

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_7007
URI
https://dais.sanu.ac.rs/123456789/7007
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Marković, Bojana
AU  - Stefanović, Ivan S.
AU  - Popović, Aleksandar R.
AU  - Ignjatović, Nenad
AU  - Nastasović, Aleksandra
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/7007
AB  - Recent advances in material technologies have resulted in the preparation of novel polymer/clay composites with improved thermal, mechanical, optoelectronic/ magnetic properties and increased biodegradability [1]. In this study, six samples of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) nanocomposites with organically-modified montmorillonite clay Cloisite 30B® (C30B), were prepared via suspension copolymerization. In order to obtain nanocomposites with fine spherical beads of regular shape and satisfying thermal stability the optimization of the synthesis conditions was performed. Firstly, the influence of the poly(N-vinyl pyrrolidone) (PVP) quantity in the aqueous phase was varied (1, 3 and 5 wt.%) at a constant stirring rate of 250 rpm and constant clay content C30B (10 wt.%). In the second phase of the optimization of the preparation, samples with a constant composition of the composite reaction mixture (5 wt.% PVP and 10 wt.% C30B) at a stirring rate of 250, 325 and 400 rpm, were prepared. According to the obtained results, it was concluded that the optimal conditions for preparation of these composites are 5 wt.% of PVP and 400 rpm. The prepared nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in air. The structure of the prepared nanocomposites was confirmed with FTIR spectroscopy. According to the obtained SEM microphotographs the fine spherical beads, with desired size and homogeneous morphology, were prepared. Furthermore, SEM analysis was also showed that clay nanoparticles are homogeneously dispersed both inside surface and cross-section area. The incorporation of C30B clay increased the thermal stability of the prepared polymer/clay nanocomposites in comparison to the pure PGME copolymer.
PB  - Belgrade : Institute for Multidisciplinary Research
C3  - Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
T1  - Optimization of the preparation of novel polymer/clay nanocomposites
SP  - 114
EP  - 114
UR  - https://hdl.handle.net/21.15107/rcub_dais_7007
ER  - 
@conference{
author = "Marković, Bojana and Stefanović, Ivan S. and Popović, Aleksandar R. and Ignjatović, Nenad and Nastasović, Aleksandra",
year = "2019",
abstract = "Recent advances in material technologies have resulted in the preparation of novel polymer/clay composites with improved thermal, mechanical, optoelectronic/ magnetic properties and increased biodegradability [1]. In this study, six samples of poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (PGME) nanocomposites with organically-modified montmorillonite clay Cloisite 30B® (C30B), were prepared via suspension copolymerization. In order to obtain nanocomposites with fine spherical beads of regular shape and satisfying thermal stability the optimization of the synthesis conditions was performed. Firstly, the influence of the poly(N-vinyl pyrrolidone) (PVP) quantity in the aqueous phase was varied (1, 3 and 5 wt.%) at a constant stirring rate of 250 rpm and constant clay content C30B (10 wt.%). In the second phase of the optimization of the preparation, samples with a constant composition of the composite reaction mixture (5 wt.% PVP and 10 wt.% C30B) at a stirring rate of 250, 325 and 400 rpm, were prepared. According to the obtained results, it was concluded that the optimal conditions for preparation of these composites are 5 wt.% of PVP and 400 rpm. The prepared nanocomposites were characterized with Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) in air. The structure of the prepared nanocomposites was confirmed with FTIR spectroscopy. According to the obtained SEM microphotographs the fine spherical beads, with desired size and homogeneous morphology, were prepared. Furthermore, SEM analysis was also showed that clay nanoparticles are homogeneously dispersed both inside surface and cross-section area. The incorporation of C30B clay increased the thermal stability of the prepared polymer/clay nanocomposites in comparison to the pure PGME copolymer.",
publisher = "Belgrade : Institute for Multidisciplinary Research",
journal = "Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia",
title = "Optimization of the preparation of novel polymer/clay nanocomposites",
pages = "114-114",
url = "https://hdl.handle.net/21.15107/rcub_dais_7007"
}
Marković, B., Stefanović, I. S., Popović, A. R., Ignjatović, N.,& Nastasović, A.. (2019). Optimization of the preparation of novel polymer/clay nanocomposites. in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia
Belgrade : Institute for Multidisciplinary Research., 114-114.
https://hdl.handle.net/21.15107/rcub_dais_7007
Marković B, Stefanović IS, Popović AR, Ignjatović N, Nastasović A. Optimization of the preparation of novel polymer/clay nanocomposites. in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia. 2019;:114-114.
https://hdl.handle.net/21.15107/rcub_dais_7007 .
Marković, Bojana, Stefanović, Ivan S., Popović, Aleksandar R., Ignjatović, Nenad, Nastasović, Aleksandra, "Optimization of the preparation of novel polymer/clay nanocomposites" in Programme and the Book of Abstracts / 5th Conference of The Serbian Society for Ceramic Materials, 5CSCS-2019, June 11-13, 2019, Belgrade, Serbia (2019):114-114,
https://hdl.handle.net/21.15107/rcub_dais_7007 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB