Synthesis, characterization and toxicity studies of gelatin modified zinc oxide nanoparticles
Authors
Janićijević, Željko
Stanković, Ana

Žegura, Bojana

Veljović, Đorđe

Filipič, Metka

Stevanović, Magdalena

Conference object (Published version)
Metadata
Show full item recordAbstract
Nanostructured zinc oxides are promising materials for numerous biomedical applications where they can serve as therapeutic agents or tools for sensing and imaging. Despite their favorable properties, wider use of zinc oxide nanoparticles in biomedicine is limited by toxicity issues. Therefore, new synthesis approaches should be devised to obtain zinc oxide nanoparticles which are safe-by-design. We present an innovative low-cost wet precipitation synthesis of gelatin modified zinc oxide nanoparticles at the gel/liquid interface. The diffusion of ammonia through the gelatin hydrogels of different porosities induces precipitation of the product in contact with the surface of the aqueous solution of zinc ions. After thermal treatment of the precipitate, adsorbed organic residues of decomposed gelatin act as modifiers of zinc oxide nanoparticles. We characterized the physicochemical properties of obtained gelatin modified zinc oxide nanoparticles by XRD, FTIR, DTA/TG, and SEM. The synthes...ized nanoparticles show hexagonal wurtzite structure and form flakelike aggregates. FTIR and DTA/TG analyses indicate that the thermal decomposition of adsorbed gelatin depends on the gelatin content of the hydrogel used in the synthesis. We also examined the viability of HepG2 cells, generation of intracellular reactive oxygen species, and genotoxicity using the MTS, DCFH-DA, and alkaline comet assay, respectively. Fabricated gelatin modified zinc oxide nanoparticles show very low toxicity potential at doses relevant for human exposure.
Keywords:
zinc oxide / nanoparticles / gelatin / genotoxicitySource:
Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia, 2019, 3-3Publisher:
- Belgrade : Institute of Technical Sciences of SASA
Funding / projects:
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Janićijević, Željko AU - Stanković, Ana AU - Žegura, Bojana AU - Veljović, Đorđe AU - Filipič, Metka AU - Stevanović, Magdalena PY - 2019 UR - https://dais.sanu.ac.rs/123456789/6968 AB - Nanostructured zinc oxides are promising materials for numerous biomedical applications where they can serve as therapeutic agents or tools for sensing and imaging. Despite their favorable properties, wider use of zinc oxide nanoparticles in biomedicine is limited by toxicity issues. Therefore, new synthesis approaches should be devised to obtain zinc oxide nanoparticles which are safe-by-design. We present an innovative low-cost wet precipitation synthesis of gelatin modified zinc oxide nanoparticles at the gel/liquid interface. The diffusion of ammonia through the gelatin hydrogels of different porosities induces precipitation of the product in contact with the surface of the aqueous solution of zinc ions. After thermal treatment of the precipitate, adsorbed organic residues of decomposed gelatin act as modifiers of zinc oxide nanoparticles. We characterized the physicochemical properties of obtained gelatin modified zinc oxide nanoparticles by XRD, FTIR, DTA/TG, and SEM. The synthesized nanoparticles show hexagonal wurtzite structure and form flakelike aggregates. FTIR and DTA/TG analyses indicate that the thermal decomposition of adsorbed gelatin depends on the gelatin content of the hydrogel used in the synthesis. We also examined the viability of HepG2 cells, generation of intracellular reactive oxygen species, and genotoxicity using the MTS, DCFH-DA, and alkaline comet assay, respectively. Fabricated gelatin modified zinc oxide nanoparticles show very low toxicity potential at doses relevant for human exposure. PB - Belgrade : Institute of Technical Sciences of SASA C3 - Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia T1 - Synthesis, characterization and toxicity studies of gelatin modified zinc oxide nanoparticles SP - 3 EP - 3 UR - https://hdl.handle.net/21.15107/rcub_dais_6968 ER -
@conference{ author = "Janićijević, Željko and Stanković, Ana and Žegura, Bojana and Veljović, Đorđe and Filipič, Metka and Stevanović, Magdalena", year = "2019", abstract = "Nanostructured zinc oxides are promising materials for numerous biomedical applications where they can serve as therapeutic agents or tools for sensing and imaging. Despite their favorable properties, wider use of zinc oxide nanoparticles in biomedicine is limited by toxicity issues. Therefore, new synthesis approaches should be devised to obtain zinc oxide nanoparticles which are safe-by-design. We present an innovative low-cost wet precipitation synthesis of gelatin modified zinc oxide nanoparticles at the gel/liquid interface. The diffusion of ammonia through the gelatin hydrogels of different porosities induces precipitation of the product in contact with the surface of the aqueous solution of zinc ions. After thermal treatment of the precipitate, adsorbed organic residues of decomposed gelatin act as modifiers of zinc oxide nanoparticles. We characterized the physicochemical properties of obtained gelatin modified zinc oxide nanoparticles by XRD, FTIR, DTA/TG, and SEM. The synthesized nanoparticles show hexagonal wurtzite structure and form flakelike aggregates. FTIR and DTA/TG analyses indicate that the thermal decomposition of adsorbed gelatin depends on the gelatin content of the hydrogel used in the synthesis. We also examined the viability of HepG2 cells, generation of intracellular reactive oxygen species, and genotoxicity using the MTS, DCFH-DA, and alkaline comet assay, respectively. Fabricated gelatin modified zinc oxide nanoparticles show very low toxicity potential at doses relevant for human exposure.", publisher = "Belgrade : Institute of Technical Sciences of SASA", journal = "Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia", title = "Synthesis, characterization and toxicity studies of gelatin modified zinc oxide nanoparticles", pages = "3-3", url = "https://hdl.handle.net/21.15107/rcub_dais_6968" }
Janićijević, Ž., Stanković, A., Žegura, B., Veljović, Đ., Filipič, M.,& Stevanović, M.. (2019). Synthesis, characterization and toxicity studies of gelatin modified zinc oxide nanoparticles. in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia Belgrade : Institute of Technical Sciences of SASA., 3-3. https://hdl.handle.net/21.15107/rcub_dais_6968
Janićijević Ž, Stanković A, Žegura B, Veljović Đ, Filipič M, Stevanović M. Synthesis, characterization and toxicity studies of gelatin modified zinc oxide nanoparticles. in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia. 2019;:3-3. https://hdl.handle.net/21.15107/rcub_dais_6968 .
Janićijević, Željko, Stanković, Ana, Žegura, Bojana, Veljović, Đorđe, Filipič, Metka, Stevanović, Magdalena, "Synthesis, characterization and toxicity studies of gelatin modified zinc oxide nanoparticles" in Program and the Book of abstracts / Eighteenth Young Researchers' Conference Materials Sciences and Engineering, December 4-6, 2019, Belgrade, Serbia (2019):3-3, https://hdl.handle.net/21.15107/rcub_dais_6968 .