DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging

Thumbnail
2019
s41598-019-52885-0.pdf (4.421Mb)
Authors
Ignjatović, Nenad
Mančić, Lidija
Vuković, Marina
Stojanović, Zoran
Nikolić, Marko G.
Škapin, Srečo Davor
Jovanović, Sonja
Veselinović, Ljiljana
Uskoković, Vuk
Lazić, Snežana
Marković, Smilja
Lazarević, Miloš M.
Uskoković, Dragan
Article (Published version)
Metadata
Show full item record
Abstract
Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization re...vealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.

Source:
Scientific Reports, 2019, 9, 1, 1-15
Publisher:
  • Springer Nature
Projects:
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)

DOI: 10.1038/s41598-019-52885-0

ISSN: 2045-2322

WoS: 000495370900005

Scopus: 2-s2.0-85074711835
[ Google Scholar ]
17
13
URI
https://www.nature.com/articles/s41598-019-52885-0
http://dais.sanu.ac.rs/123456789/6950
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Mančić, Lidija
AU  - Vuković, Marina
AU  - Stojanović, Zoran
AU  - Nikolić, Marko G.
AU  - Škapin, Srečo Davor
AU  - Jovanović, Sonja
AU  - Veselinović, Ljiljana
AU  - Uskoković, Vuk
AU  - Lazić, Snežana
AU  - Marković, Smilja
AU  - Lazarević, Miloš M.
AU  - Uskoković, Dragan
PY  - 2019
UR  - https://www.nature.com/articles/s41598-019-52885-0
UR  - http://dais.sanu.ac.rs/123456789/6950
AB  - Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.
PB  - Springer Nature
T2  - Scientific Reports
T1  - Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging
SP  - 1
EP  - 15
VL  - 9
IS  - 1
DO  - 10.1038/s41598-019-52885-0
ER  - 
@article{
author = "Ignjatović, Nenad and Mančić, Lidija and Vuković, Marina and Stojanović, Zoran and Nikolić, Marko G. and Škapin, Srečo Davor and Jovanović, Sonja and Veselinović, Ljiljana and Uskoković, Vuk and Lazić, Snežana and Marković, Smilja and Lazarević, Miloš M. and Uskoković, Dragan",
year = "2019",
url = "https://www.nature.com/articles/s41598-019-52885-0, http://dais.sanu.ac.rs/123456789/6950",
abstract = "Taking advantage of the flexibility of the apatite structure, nano- and micro-particles of hydroxyapatite (HAp) were doped with different combinations of rare earth ions (RE3+ = Gd, Eu, Yb, Tm) to achieve a synergy among their magnetic and optical properties and to enable their application in preventive medicine, particularly diagnostics based on multimodal imaging. All powders were synthesized through hydrothermal processing at T ≤ 200 °C. An X-ray powder diffraction analysis showed that all powders crystallized in P63/m space group of the hexagonal crystal structure. The refined unit-cell parameters reflected a decrease in the unit cell volume as a result of the partial substitution of Ca2+ with smaller RE3+ ions at both cation positions. The FTIR analysis additionally suggested that a synergy may exist solely in the triply doped system, where the lattice symmetry and vibration modes become more coherent than in the singly or doubly doped systems. HAp:RE3+ optical characterization revealed a change in the energy band gap and the appearance of a weak blue luminescence (λex = 370 nm) due to an increased concentration of defects. The “up”- and the “down”-conversion spectra of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders showed characteristic transitions of Tm3+ and Eu3+, respectively. Furthermore, in contrast to diamagnetic HAp, all HAp:RE3+ powders exhibited paramagnetic behavior. Cell viability tests of HAp:Gd/Yb/Tm and HAp:Gd/Eu powders in human dental pulp stem cell cultures indicated their good biocompatibility.",
publisher = "Springer Nature",
journal = "Scientific Reports",
title = "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging",
pages = "1-15",
volume = "9",
number = "1",
doi = "10.1038/s41598-019-52885-0"
}
Ignjatović N, Mančić L, Vuković M, Stojanović Z, Nikolić MG, Škapin SD, Jovanović S, Veselinović L, Uskoković V, Lazić S, Marković S, Lazarević MM, Uskoković D. Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Scientific Reports. 2019;9(1):1-15
Ignjatović, N., Mančić, L., Vuković, M., Stojanović, Z., Nikolić, M. G., Škapin, S. D., Jovanović, S., Veselinović, L., Uskoković, V., Lazić, S., Marković, S., Lazarević, M. M.,& Uskoković, D. (2019). Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging.
Scientific ReportsSpringer Nature., 9(1), 1-15.
https://doi.org/10.1038/s41598-019-52885-0
Ignjatović Nenad, Mančić Lidija, Vuković Marina, Stojanović Zoran, Nikolić Marko G., Škapin Srečo Davor, Jovanović Sonja, Veselinović Ljiljana, Uskoković Vuk, Lazić Snežana, Marković Smilja, Lazarević Miloš M., Uskoković Dragan, "Rare-earth (Gd 3+ ,Yb 3+ /Tm 3+ , Eu 3+ ) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging" 9, no. 1 (2019):1-15,
https://doi.org/10.1038/s41598-019-52885-0 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB