Digitalni arhiv izdanja SANU
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled rada 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Pregled rada
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Pregled rada
JavaScript is disabled for your browser. Some features of this site may not work without it.

A study of defect structures in Fe-alloyed ZnO: Morphology, magnetism, and hyperfine interactions

Thumbnail
2019
Ivanovski_Journal-of-Applied-Physics_2019.pdf (2.296Mb)
Autori
Ivanovski, Valentin N.
Belošević-Čavor, Jelena
Rajić, Vladimir
Umićević, Ana
Marković, Smilja
Kusigerski, Vladan
Mitrić, Miodrag
Koteski, Vasil
Članak u časopisu (Objavljena verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
In order to study the effect of Fe cation substitution on the local structure, defect formation, and hyperfine interactions in ZnO, Mössbauer spectroscopy measurements of the microwave processed Zn1−xFexO (x=0.05, 0.10, 0.15, and 0.20) nanoparticles, together with ab initio calculations, were performed. Complementary information on the distribution of particle size and morphology, as well as magnetic properties, were obtained by X-ray diffraction, transmission electron microscopy, and squid-magnetometry. The selected model for analyzing the Mössbauer spectra of our samples is a distribution of quadrupole splittings. The fitting model with two Lorentz doublets was rejected due to its failure to include larger doublets. The Fe3+ ions do not yield magnetic ordering in the samples at room temperature. The results from first-principles calculations confirm that the major component of the Mössbauer spectra corresponds to the Fe-alloyed ZnO with Zn vacancy in the next nearest neighbor environ...ment. The magnetic measurements are consistent with the description of the distribution of iron ions over the randomly formed clusters in the ZnO host lattice. While at room temperature all the samples are paramagnetic, magnetic interactions cause a transition into a cluster spin-glass state at low temperatures.

Izvor:
Journal of Applied Physics, 2019, 126, 12, 125703-
Izdavač:
  • AIP Publishing
Projekti:
  • Nanostrukturni multifunkcionalni materijali i nanokompoziti (RS-45018)
  • Molekularno dizajniranje nanočestica kontrolisanih morfoloških i fizičko-hemijskih karakteristika i funkcionalnih materijala na njihovoj osnovi (RS-45004)

DOI: 10.1063/1.5095837

ISSN: 0021-8979

WoS: 000488828300006

Scopus: 2-s2.0-85072611368
[ Google Scholar ]
3
3
URI
https://aip.scitation.org/doi/10.1063/1.5095837
http://dais.sanu.ac.rs/123456789/6883
Kolekcije
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institucija
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Ivanovski, Valentin N.
AU  - Belošević-Čavor, Jelena
AU  - Rajić, Vladimir
AU  - Umićević, Ana
AU  - Marković, Smilja
AU  - Kusigerski, Vladan
AU  - Mitrić, Miodrag
AU  - Koteski, Vasil
PY  - 2019
UR  - https://aip.scitation.org/doi/10.1063/1.5095837
UR  - http://dais.sanu.ac.rs/123456789/6883
AB  - In order to study the effect of Fe cation substitution on the local structure, defect formation, and hyperfine interactions in ZnO, Mössbauer spectroscopy measurements of the microwave processed Zn1−xFexO (x=0.05, 0.10, 0.15, and 0.20) nanoparticles, together with ab initio calculations, were performed. Complementary information on the distribution of particle size and morphology, as well as magnetic properties, were obtained by X-ray diffraction, transmission electron microscopy, and squid-magnetometry. The selected model for analyzing the Mössbauer spectra of our samples is a distribution of quadrupole splittings. The fitting model with two Lorentz doublets was rejected due to its failure to include larger doublets. The Fe3+ ions do not yield magnetic ordering in the samples at room temperature. The results from first-principles calculations confirm that the major component of the Mössbauer spectra corresponds to the Fe-alloyed ZnO with Zn vacancy in the next nearest neighbor environment. The magnetic measurements are consistent with the description of the distribution of iron ions over the randomly formed clusters in the ZnO host lattice. While at room temperature all the samples are paramagnetic, magnetic interactions cause a transition into a cluster spin-glass state at low temperatures.
PB  - AIP Publishing
T2  - Journal of Applied Physics
T1  - A study of defect structures in Fe-alloyed ZnO: Morphology, magnetism, and hyperfine interactions
SP  - 125703
VL  - 126
IS  - 12
DO  - 10.1063/1.5095837
ER  - 
@article{
author = "Ivanovski, Valentin N. and Belošević-Čavor, Jelena and Rajić, Vladimir and Umićević, Ana and Marković, Smilja and Kusigerski, Vladan and Mitrić, Miodrag and Koteski, Vasil",
year = "2019",
url = "https://aip.scitation.org/doi/10.1063/1.5095837, http://dais.sanu.ac.rs/123456789/6883",
abstract = "In order to study the effect of Fe cation substitution on the local structure, defect formation, and hyperfine interactions in ZnO, Mössbauer spectroscopy measurements of the microwave processed Zn1−xFexO (x=0.05, 0.10, 0.15, and 0.20) nanoparticles, together with ab initio calculations, were performed. Complementary information on the distribution of particle size and morphology, as well as magnetic properties, were obtained by X-ray diffraction, transmission electron microscopy, and squid-magnetometry. The selected model for analyzing the Mössbauer spectra of our samples is a distribution of quadrupole splittings. The fitting model with two Lorentz doublets was rejected due to its failure to include larger doublets. The Fe3+ ions do not yield magnetic ordering in the samples at room temperature. The results from first-principles calculations confirm that the major component of the Mössbauer spectra corresponds to the Fe-alloyed ZnO with Zn vacancy in the next nearest neighbor environment. The magnetic measurements are consistent with the description of the distribution of iron ions over the randomly formed clusters in the ZnO host lattice. While at room temperature all the samples are paramagnetic, magnetic interactions cause a transition into a cluster spin-glass state at low temperatures.",
publisher = "AIP Publishing",
journal = "Journal of Applied Physics",
title = "A study of defect structures in Fe-alloyed ZnO: Morphology, magnetism, and hyperfine interactions",
pages = "125703",
volume = "126",
number = "12",
doi = "10.1063/1.5095837"
}
Ivanovski VN, Belošević-Čavor J, Rajić V, Umićević A, Marković S, Kusigerski V, Mitrić M, Koteski V. A study of defect structures in Fe-alloyed ZnO: Morphology, magnetism, and hyperfine interactions. Journal of Applied Physics. 2019;126(12):125703
Ivanovski, V. N., Belošević-Čavor, J., Rajić, V., Umićević, A., Marković, S., Kusigerski, V., Mitrić, M.,& Koteski, V. (2019). A study of defect structures in Fe-alloyed ZnO: Morphology, magnetism, and hyperfine interactions.
Journal of Applied PhysicsAIP Publishing., 126(12), 125703.
https://doi.org/10.1063/1.5095837
Ivanovski Valentin N., Belošević-Čavor Jelena, Rajić Vladimir, Umićević Ana, Marković Smilja, Kusigerski Vladan, Mitrić Miodrag, Koteski Vasil, "A study of defect structures in Fe-alloyed ZnO: Morphology, magnetism, and hyperfine interactions" 126, no. 12 (2019):125703,
https://doi.org/10.1063/1.5095837 .

DSpace software copyright © 2002-2015  DuraSpace
O Digitalnom arhivu izdanja SANU (DAIS) | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumInstitucijeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O Digitalnom arhivu izdanja SANU (DAIS) | Pošaljite zapažanja

re3dataOpenAIRERCUB