Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material
Authors
Nikolić, Maria Vesna
Dojčinović, Milena

Vasiljević, Zorka Ž.

Luković, Miloljub D.

Labus, Nebojša

Conference object (Accepted Version)
Metadata
Show full item recordAbstract
Nanocomposite Zn2SnO4/SnO2 powder was obtained by solid state synthesis from homogenized starting nanopowders of ZnO and SnO2 mixed in the 1:1 molar ratio, structurally and morphologically characterized using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM). Thick film paste was made by adding organic vehicles to the obtained powder. Three to five layers (layer thickness approx. 12 μm) were screen printed on alumina substrate with small test PdAg electrodes and fired at 600°C for 30 minutes. SEM analysis confirmed formation of a porous structure suitable for humidity sensing. Impedance response was studied at the working temperatures of 25 and 50°in a humidity chamber where the relative humidity (RH) was 30-90% and measured frequency 42 Hz - 1 MHz. With increase in film thickness the overall sensor impedance increased. It reduced at 100 Hz from 36 to 0.25 MΩ (60 μm), from 23.4 to 0.25 MΩ (48 μm) and from 6.8 to 0.02 MΩ (36 μm) at 25°C, while at 50°C the overall measured i...mpedance was lower, and reduced from 14 MΩ to 0.72 MΩ (48 μm) for RH 30 and 90%, respectively. The response (8 s) and recovery (10 s) was fast, showing that this nanocomposite has potential for application in humidity sensing.
Keywords:
alumina substrate / electrodes / film thickness / firing (materials) / frequency measurement / humidity / humidity sensing material / humidity sensors / Impedance / layer thickness / metals / molar ratio / morphological properties / nanocomposite / nanocomposites / nanofabrication / nanoporous materials / nanopowders / nanosensors / organic vehicles / PdAg electrodes / porous structure / powders / Powders / relative humidity / scanning electron microscopy / SEM / Sensors / solid state method / structural properties / surface morphology / thick film paste / thick films / Thick films / tin compounds / X-ray diffraction / XRD / zinc compounds / Zn2SnO4-SnO2Source:
2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), 2019, 1-3Publisher:
- IEEE
Projects:
Note:
- This is the peer reviewed version of the following article: Nikolic, M.V., Dojcinovic, M., Vasiljevic, Z.Z., Lukovic, M.D., Labus, N.J., 2019. Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material, in: 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS). Presented at the 2019 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), IEEE, pp. 1–3. https://doi.org/10.1109/FLEPS.2019.8792304
DOI: 10.1109/FLEPS.2019.8792304
ISBN: 978-1-5386-9304-9
Scopus: 2-s2.0-85071381473
Related items
Showing items related by title, author, creator and subject.
-
Nanocomposite Zn2SnO4/SnO2 Thick films as a Humidity Sensing Material
Nikolić, Maria Vesna; Dojčinović, Milena; Vasiljević, Zorka Ž.; Luković, Miloljub D.; Labus, Nebojša (IEEE, 2019) -
Structural, morphological and textural properties of iron manganite (FeMnO3) thick films applied for humidity sensing
Nikolić, Maria Vesna; Krstić, Jugoslav; Labus, Nebojša; Luković, Miloljub; Dojčinović, Milena; Radovanović, Milan; Tadić, Nenad (Elsevier, 2020) -
Nanocrystalline SnO2-Zn2SnO4 composite thick films applied as humidity sensors
Nikolić, Maria Vesna; Luković, Miloljub D.; Dojčinović, Milena; Vasiljević, Zorka Ž. (Belgrade : Institute for Multidisciplinary Research, 2019)