DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries

Authorized Users Only
2019
Authors
Mitić, Vojislav V.
Lazović, Goran
Paunović, Vesna
Veljković, Sandra
Ranđelović, Branislav
Vlahović, Branislav
Fecht, Hans
Article (Published version)
Metadata
Show full item record
Abstract
Consolidation parameters have influence and can be used to control structure of BaTiO3 based materials. Microstructure and dielectric properties of Yb2O3 doped BaTiO3-ceramics, sintered from 1320 °C to 1380 °C have been investigated. The correlation between microstructure, capacity and dielectric properties of doped BaTiO3-ceramics, based on fractal geometry and micro-contact surfaces, has been developed. Using the fractal descriptors of the grains contact surface, the microstructure reconstruction constituents, as grains and pores shapes or intergranular contacts, has been successfully done. Obtained results indicated that fractal analysis contact surfaces descriptors of different shapes are very important for the prognosis of BaTiO3-ceramics microstructure and capacity and dielectric properties. The morphology of ceramics grains pointed out the validity of developing new structure analytical methods, based on different grains’ shape geometries. The grains contact structure based on M...inkowski hull is presented as a new tool for BaTiO3-ceramics materials structure research. The materials properties prognosis are determined according to the correlations synthesis–structure–property, within Minkowski hull fractal frame. © 2019, © 2019 Taylor & Francis Group, LLC.

Keywords:
ceramics / grains / microelectronic / Minkowski hull
Source:
Ferroelectrics, 2019, 545, 1, 184-194
Publisher:
  • Taylor & Francis
Funding / projects:
  • Serbian musical identities within local and global frameworks: traditions, changes, challenges (RS-177004)

DOI: 10.1080/00150193.2019.1621704

ISSN: 0015-0193

WoS: 000482905400023

Scopus: 2-s2.0-85071142372
[ Google Scholar ]
3
3
Handle
https://hdl.handle.net/21.15107/rcub_dais_6686
URI
https://dais.sanu.ac.rs/123456789/6686
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Mitić, Vojislav V.
AU  - Lazović, Goran
AU  - Paunović, Vesna
AU  - Veljković, Sandra
AU  - Ranđelović, Branislav
AU  - Vlahović, Branislav
AU  - Fecht, Hans
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/6686
AB  - Consolidation parameters have influence and can be used to control structure of BaTiO3 based materials. Microstructure and dielectric properties of Yb2O3 doped BaTiO3-ceramics, sintered from 1320 °C to 1380 °C have been investigated. The correlation between microstructure, capacity and dielectric properties of doped BaTiO3-ceramics, based on fractal geometry and micro-contact surfaces, has been developed. Using the fractal descriptors of the grains contact surface, the microstructure reconstruction constituents, as grains and pores shapes or intergranular contacts, has been successfully done. Obtained results indicated that fractal analysis contact surfaces descriptors of different shapes are very important for the prognosis of BaTiO3-ceramics microstructure and capacity and dielectric properties. The morphology of ceramics grains pointed out the validity of developing new structure analytical methods, based on different grains’ shape geometries. The grains contact structure based on Minkowski hull is presented as a new tool for BaTiO3-ceramics materials structure research. The materials properties prognosis are determined according to the correlations synthesis–structure–property, within Minkowski hull fractal frame. © 2019, © 2019 Taylor & Francis Group, LLC.
PB  - Taylor & Francis
T2  - Ferroelectrics
T1  - Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries
SP  - 184
EP  - 194
VL  - 545
IS  - 1
DO  - 10.1080/00150193.2019.1621704
UR  - https://hdl.handle.net/21.15107/rcub_dais_6686
ER  - 
@article{
author = "Mitić, Vojislav V. and Lazović, Goran and Paunović, Vesna and Veljković, Sandra and Ranđelović, Branislav and Vlahović, Branislav and Fecht, Hans",
year = "2019",
abstract = "Consolidation parameters have influence and can be used to control structure of BaTiO3 based materials. Microstructure and dielectric properties of Yb2O3 doped BaTiO3-ceramics, sintered from 1320 °C to 1380 °C have been investigated. The correlation between microstructure, capacity and dielectric properties of doped BaTiO3-ceramics, based on fractal geometry and micro-contact surfaces, has been developed. Using the fractal descriptors of the grains contact surface, the microstructure reconstruction constituents, as grains and pores shapes or intergranular contacts, has been successfully done. Obtained results indicated that fractal analysis contact surfaces descriptors of different shapes are very important for the prognosis of BaTiO3-ceramics microstructure and capacity and dielectric properties. The morphology of ceramics grains pointed out the validity of developing new structure analytical methods, based on different grains’ shape geometries. The grains contact structure based on Minkowski hull is presented as a new tool for BaTiO3-ceramics materials structure research. The materials properties prognosis are determined according to the correlations synthesis–structure–property, within Minkowski hull fractal frame. © 2019, © 2019 Taylor & Francis Group, LLC.",
publisher = "Taylor & Francis",
journal = "Ferroelectrics",
title = "Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries",
pages = "184-194",
volume = "545",
number = "1",
doi = "10.1080/00150193.2019.1621704",
url = "https://hdl.handle.net/21.15107/rcub_dais_6686"
}
Mitić, V. V., Lazović, G., Paunović, V., Veljković, S., Ranđelović, B., Vlahović, B.,& Fecht, H.. (2019). Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries. in Ferroelectrics
Taylor & Francis., 545(1), 184-194.
https://doi.org/10.1080/00150193.2019.1621704
https://hdl.handle.net/21.15107/rcub_dais_6686
Mitić VV, Lazović G, Paunović V, Veljković S, Ranđelović B, Vlahović B, Fecht H. Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries. in Ferroelectrics. 2019;545(1):184-194.
doi:10.1080/00150193.2019.1621704
https://hdl.handle.net/21.15107/rcub_dais_6686 .
Mitić, Vojislav V., Lazović, Goran, Paunović, Vesna, Veljković, Sandra, Ranđelović, Branislav, Vlahović, Branislav, Fecht, Hans, "Electronic ceramics fractal microstructure analysis - Minkowski Hull and grain boundaries" in Ferroelectrics, 545, no. 1 (2019):184-194,
https://doi.org/10.1080/00150193.2019.1621704 .,
https://hdl.handle.net/21.15107/rcub_dais_6686 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB