DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler

Authorized Users Only
2014
Authors
Mofokeng, Tladi G.
Luyt, Adriaan S.
Pavlović, Vera P.
Pavlović, Vladimir B.
Dudić, Duško
Vlahović, Branislav
Đoković, Vladimir
Article (Published version)
Metadata
Show full item record
Abstract
Nanocomposites of polyvinylidene fluoride/polymethyl methacrylate (PVDF/PMMA) blend and mechanically activated barium titanate (BaTiO3) particles were prepared by melt mixing. Modification of filler by means of mechanical activation has a profound effect on the crystallization of PVDF in the blend matrix. Raman analysis showed that the modified BaTiO3 particles, due to higher specific surfaces, induce, predominantly, the crystallization of the electrically active β-phase of PVDF, while the initial micron size particles induce the formation of the most common but non-polar α-crystal form. The introduction of activated particles reduces the overall crystallinity but slightly affects the crystallization and melting temperatures of the matrix. Dielectric spectroscopy revealed that at fixed filler content the dielectric constant of the blend increases with decreasing of the particle size (increasing of the activation time). A similar trend was observed for the storage moduli in dynamic mech...anical analysis; the stiffness of the composite was higher when mechanically activated particles were used.

Keywords:
polyvinylidene fluoride and polymethyl methacrylate / PVDF and PMMA / mechanical activation / barium titanate
Source:
Journal of Applied Physics, 2014, 115, 084109-
Publisher:
  • AIP Publishing
Funding / projects:
  • Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)
  • Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites (RS-172056)
  • United States National Science Foundation (NSF) / Centers of Research Excellence in Science and Technology (CREST), Grant HRD-0833184
  • United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A
  • National Research Foundation in South Africa

DOI: 10.1063/1.4866694

ISSN: 0021-8979 (Print); 1089-7550 (Online)

WoS: 000332619600066

Scopus: 2-s2.0-84896795393
[ Google Scholar ]
40
33
Handle
https://hdl.handle.net/21.15107/rcub_dais_660
URI
https://dais.sanu.ac.rs/123456789/660
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Mofokeng, Tladi G.
AU  - Luyt, Adriaan S.
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Dudić, Duško
AU  - Vlahović, Branislav
AU  - Đoković, Vladimir
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/660
AB  - Nanocomposites of polyvinylidene fluoride/polymethyl methacrylate (PVDF/PMMA) blend and mechanically activated barium titanate (BaTiO3) particles were prepared by melt mixing. Modification of filler by means of mechanical activation has a profound effect on the crystallization of PVDF in the blend matrix. Raman analysis showed that the modified BaTiO3 particles, due to higher specific surfaces, induce, predominantly, the crystallization of the electrically active β-phase of PVDF, while the initial micron size particles induce the formation of the most common but non-polar α-crystal form. The introduction of activated particles reduces the overall crystallinity but slightly affects the crystallization and melting temperatures of the matrix. Dielectric spectroscopy revealed that at fixed filler content the dielectric constant of the blend increases with decreasing of the particle size (increasing of the activation time). A similar trend was observed for the storage moduli in dynamic mechanical analysis; the stiffness of the composite was higher when mechanically activated particles were used.
PB  - AIP Publishing
T2  - Journal of Applied Physics
T1  - Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler
SP  - 084109
VL  - 115
DO  - 10.1063/1.4866694
UR  - https://hdl.handle.net/21.15107/rcub_dais_660
ER  - 
@article{
author = "Mofokeng, Tladi G. and Luyt, Adriaan S. and Pavlović, Vera P. and Pavlović, Vladimir B. and Dudić, Duško and Vlahović, Branislav and Đoković, Vladimir",
year = "2014",
abstract = "Nanocomposites of polyvinylidene fluoride/polymethyl methacrylate (PVDF/PMMA) blend and mechanically activated barium titanate (BaTiO3) particles were prepared by melt mixing. Modification of filler by means of mechanical activation has a profound effect on the crystallization of PVDF in the blend matrix. Raman analysis showed that the modified BaTiO3 particles, due to higher specific surfaces, induce, predominantly, the crystallization of the electrically active β-phase of PVDF, while the initial micron size particles induce the formation of the most common but non-polar α-crystal form. The introduction of activated particles reduces the overall crystallinity but slightly affects the crystallization and melting temperatures of the matrix. Dielectric spectroscopy revealed that at fixed filler content the dielectric constant of the blend increases with decreasing of the particle size (increasing of the activation time). A similar trend was observed for the storage moduli in dynamic mechanical analysis; the stiffness of the composite was higher when mechanically activated particles were used.",
publisher = "AIP Publishing",
journal = "Journal of Applied Physics",
title = "Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler",
pages = "084109",
volume = "115",
doi = "10.1063/1.4866694",
url = "https://hdl.handle.net/21.15107/rcub_dais_660"
}
Mofokeng, T. G., Luyt, A. S., Pavlović, V. P., Pavlović, V. B., Dudić, D., Vlahović, B.,& Đoković, V.. (2014). Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. in Journal of Applied Physics
AIP Publishing., 115, 084109.
https://doi.org/10.1063/1.4866694
https://hdl.handle.net/21.15107/rcub_dais_660
Mofokeng TG, Luyt AS, Pavlović VP, Pavlović VB, Dudić D, Vlahović B, Đoković V. Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler. in Journal of Applied Physics. 2014;115:084109.
doi:10.1063/1.4866694
https://hdl.handle.net/21.15107/rcub_dais_660 .
Mofokeng, Tladi G., Luyt, Adriaan S., Pavlović, Vera P., Pavlović, Vladimir B., Dudić, Duško, Vlahović, Branislav, Đoković, Vladimir, "Ferroelectric nanocomposites of polyvinylidene fluoride/polymethyl methacrylate blend and BaTiO3 particles: Fabrication of β-crystal polymorph rich matrix through mechanical activation of the filler" in Journal of Applied Physics, 115 (2014):084109,
https://doi.org/10.1063/1.4866694 .,
https://hdl.handle.net/21.15107/rcub_dais_660 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB