Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP
Authorized Users Only
2014
Authors
Flores-Carrasco, Gregorio
Carrillo, J.
Luna, J. A.
Martínez, R.
Sierra-Fernández, Aránzazu

Milošević, Olivera

Rabanal, Maria Eugenia

Article (Published version)

Metadata
Show full item recordAbstract
ZnO nanoparticles were synthesized in a horizontal three zones furnace at 500 °C using different zinc nitrate hexahydrate concentrations (0.01 M, 0.1 M, and 1.0 M) as a reactive precursor solution by air assisted Ultrasonic Spray Pyrolysis (USP) method. The physico-chemical, structural and functional properties of synthesized ZnO nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV–vis spectroscopy and photoluminescence (PL) measurements. Also, the photocatalytic activities of ZnO synthesized from different precursor concentrations were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. SEM revealed two types of ZnO nanoparticles: a quasi-spherical, desert-rose like shape of the secondary particles, which does not change significantly with the increasi...ng of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248 ± 73 to 920 ± 190 nm, XRD reveals the similar tendency for the crystallite size which changes from 23 ± 4 to 55 ± 12 nm in the analyzed region. HRTEM implies the secondary particles are with hierarchical structure composed of primary nanosized subunits. The PL spectra imply a typical broad peak of wavelength centered in the visible region exhibiting the corresponding red-shift with the increase of solution concentration: 560, 583 and 586 nm for the 0.01, 0.1 and 1.0 M solution, respectively. The reported results showed the photocatalytic efficiency of ZnO nanoparticles was enhanced by increased precursor concentration.
Keywords:
zinc oxide / ultrasonic spray pyrolysis / nanoparticles / photocatalytic efficiencySource:
Advanced Powder Technology, 2014, 25, 5, 1435-1441Publisher:
- Elsevier
Funding / projects:
- Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
- CONACyT-154725
- PIFI-2013
- VIEP-BUAP-2013
- G.D. of Universities and Research, Madrid Regional Government, Spain, Advanced Structural Materials Program - ESTRUMAT (S2009/MAT-1585)
- Interministerial Commission for Science and Technology (CICYT), Spain, Project MAT2010-19837-C06-05
DOI: 10.1016/j.apt.2014.02.004
ISSN: 0921-8831 (Print); 1568-5527 (Online)
WoS: 000343805800005
Scopus: 2-s2.0-84908021195
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - JOUR AU - Flores-Carrasco, Gregorio AU - Carrillo, J. AU - Luna, J. A. AU - Martínez, R. AU - Sierra-Fernández, Aránzazu AU - Milošević, Olivera AU - Rabanal, Maria Eugenia PY - 2014 UR - https://dais.sanu.ac.rs/123456789/651 AB - ZnO nanoparticles were synthesized in a horizontal three zones furnace at 500 °C using different zinc nitrate hexahydrate concentrations (0.01 M, 0.1 M, and 1.0 M) as a reactive precursor solution by air assisted Ultrasonic Spray Pyrolysis (USP) method. The physico-chemical, structural and functional properties of synthesized ZnO nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV–vis spectroscopy and photoluminescence (PL) measurements. Also, the photocatalytic activities of ZnO synthesized from different precursor concentrations were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. SEM revealed two types of ZnO nanoparticles: a quasi-spherical, desert-rose like shape of the secondary particles, which does not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248 ± 73 to 920 ± 190 nm, XRD reveals the similar tendency for the crystallite size which changes from 23 ± 4 to 55 ± 12 nm in the analyzed region. HRTEM implies the secondary particles are with hierarchical structure composed of primary nanosized subunits. The PL spectra imply a typical broad peak of wavelength centered in the visible region exhibiting the corresponding red-shift with the increase of solution concentration: 560, 583 and 586 nm for the 0.01, 0.1 and 1.0 M solution, respectively. The reported results showed the photocatalytic efficiency of ZnO nanoparticles was enhanced by increased precursor concentration. PB - Elsevier T2 - Advanced Powder Technology T1 - Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP SP - 1435 EP - 1441 VL - 25 IS - 5 DO - 10.1016/j.apt.2014.02.004 UR - https://hdl.handle.net/21.15107/rcub_dais_651 ER -
@article{ author = "Flores-Carrasco, Gregorio and Carrillo, J. and Luna, J. A. and Martínez, R. and Sierra-Fernández, Aránzazu and Milošević, Olivera and Rabanal, Maria Eugenia", year = "2014", abstract = "ZnO nanoparticles were synthesized in a horizontal three zones furnace at 500 °C using different zinc nitrate hexahydrate concentrations (0.01 M, 0.1 M, and 1.0 M) as a reactive precursor solution by air assisted Ultrasonic Spray Pyrolysis (USP) method. The physico-chemical, structural and functional properties of synthesized ZnO nanoparticles have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV–vis spectroscopy and photoluminescence (PL) measurements. Also, the photocatalytic activities of ZnO synthesized from different precursor concentrations were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at room temperature. SEM revealed two types of ZnO nanoparticles: a quasi-spherical, desert-rose like shape of the secondary particles, which does not change significantly with the increasing of precursor solution concentration as well as some content of the broken spheres. Increasing the precursor solution concentration leads to the increase in the average size of ZnO secondary particles from 248 ± 73 to 920 ± 190 nm, XRD reveals the similar tendency for the crystallite size which changes from 23 ± 4 to 55 ± 12 nm in the analyzed region. HRTEM implies the secondary particles are with hierarchical structure composed of primary nanosized subunits. The PL spectra imply a typical broad peak of wavelength centered in the visible region exhibiting the corresponding red-shift with the increase of solution concentration: 560, 583 and 586 nm for the 0.01, 0.1 and 1.0 M solution, respectively. The reported results showed the photocatalytic efficiency of ZnO nanoparticles was enhanced by increased precursor concentration.", publisher = "Elsevier", journal = "Advanced Powder Technology", title = "Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP", pages = "1435-1441", volume = "25", number = "5", doi = "10.1016/j.apt.2014.02.004", url = "https://hdl.handle.net/21.15107/rcub_dais_651" }
Flores-Carrasco, G., Carrillo, J., Luna, J. A., Martínez, R., Sierra-Fernández, A., Milošević, O.,& Rabanal, M. E.. (2014). Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP. in Advanced Powder Technology Elsevier., 25(5), 1435-1441. https://doi.org/10.1016/j.apt.2014.02.004 https://hdl.handle.net/21.15107/rcub_dais_651
Flores-Carrasco G, Carrillo J, Luna JA, Martínez R, Sierra-Fernández A, Milošević O, Rabanal ME. Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP. in Advanced Powder Technology. 2014;25(5):1435-1441. doi:10.1016/j.apt.2014.02.004 https://hdl.handle.net/21.15107/rcub_dais_651 .
Flores-Carrasco, Gregorio, Carrillo, J., Luna, J. A., Martínez, R., Sierra-Fernández, Aránzazu, Milošević, Olivera, Rabanal, Maria Eugenia, "Synthesis, characterization and photocatalytic properties of nanostructured ZnO particles obtained by low temperature air-assisted-USP" in Advanced Powder Technology, 25, no. 5 (2014):1435-1441, https://doi.org/10.1016/j.apt.2014.02.004 ., https://hdl.handle.net/21.15107/rcub_dais_651 .