DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity

Thumbnail
2019
CERI-D-19-04816R1.pdf (1.623Mb)
Authors
Veljović, Đorđe
Matić, Tamara
Stamenić, Tanja
Kojić, Vesna
Dimitrijević Branković, Suzana
Lukić, Miodrag J.
Jevtić, Sanja
Radovanović, Željko
Petrović, Rada
Janaćković, Đorđe
Article (Accepted Version)
Metadata
Show full item record
Abstract
The aim of this study was to improve the mechanical properties and to optimize antimicrobial activity of hydroxyapatite (HAP) by simultaneous doping with Mg and Cu ions in order to obtain material that would be able to assist in the bone/tooth healing process, prevent post-implementation infections and provide satisfying values of hardness and fracture toughness for biomedical application. Ion doping was done during the hydrothermal synthesis of HAP powders, whereby the content of Mg ions in the starting solution was varied between 1-20 mol. % with regard to Ca ions, while the amount of Cu ions was kept constant at 0.4 mol. %. The green compacts were sintered for 2 h at temperatures ranging 750–1200 °C depending on the Mg content, chosen in agreement with dilatometry results. Presence of Mg ions was found to favour transition from HAP to β−tricalcium phosphate phase (β−TCP), which enabled formation of biphasic HAP/β−TCP and pure β−TCP phase at 160 °C during hydrothermal synthesis. In v...itro investigation of antimicrobial activity against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis showed satisfactory antimicrobial activity. MTT assay performed on MRC-5 and L929 cell lines showed excellent cytocompatibility and cell proliferation. Maximum hardness by Vickers and fracture toughness values, 4.96 GPa and 1.75 MPa m1/2 respectively, were obtained upon addition of 5 mol. % Mg, as a consequence of the lowest grain size and porosity, as well as the highest densification rate. This is, to the best of our knowledge, the highest fracture toughness for HAP or β-TCP ceramics reported thus far.

Keywords:
biomedical application / hydroxyapatite / mechanical properties / sintering
Source:
Ceramics International, 2019, 45, 17, Part A, 22029-
Publisher:
  • Elsevier
Funding / projects:
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
Note:
  • This is the peer-reviewed version ofthe article: Veljović, Đorđe, Matić, Tamara, Stamenić, Tanja, Kojić, Vesna, Dimitrijević Branković, Suzana, Lukić, Miodrag J., Jevtić, Sanja, Radovanović, Željko, Petrović, Rada, Janaćković, Đorđe, "Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity" in Ceramics International, 45, no. 17, Part A (2019):22029, https://doi.org/10.1016/j.ceramint.2019.07.219
Related info:
  • Version of
    http://dx.doi.org/10.1016/j.ceramint.2019.07.219
  • Version of
    https://hdl.handle.net/21.15107/rcub_dais_6948

DOI: 10.1016/j.ceramint.2019.07.219

ISSN: 0272-8842

WoS: 000493212500122

Scopus: 2-s2.0-85069563982
[ Google Scholar ]
18
15
Handle
https://hdl.handle.net/21.15107/rcub_dais_6504
URI
http://www.sciencedirect.com/science/article/pii/S0272884219320413
https://dais.sanu.ac.rs/123456789/6504
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Veljović, Đorđe
AU  - Matić, Tamara
AU  - Stamenić, Tanja
AU  - Kojić, Vesna
AU  - Dimitrijević Branković, Suzana
AU  - Lukić, Miodrag J.
AU  - Jevtić, Sanja
AU  - Radovanović, Željko
AU  - Petrović, Rada
AU  - Janaćković, Đorđe
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0272884219320413
UR  - https://dais.sanu.ac.rs/123456789/6504
AB  - The aim of this study was to improve the mechanical properties and to optimize antimicrobial activity of hydroxyapatite (HAP) by simultaneous doping with Mg and Cu ions in order to obtain material that would be able to assist in the bone/tooth healing process, prevent post-implementation infections and provide satisfying values of hardness and fracture toughness for biomedical application. Ion doping was done during the hydrothermal synthesis of HAP powders, whereby the content of Mg ions in the starting solution was varied between 1-20 mol. % with regard to Ca ions, while the amount of Cu ions was kept constant at 0.4 mol. %. The green compacts were sintered for 2 h at temperatures ranging 750–1200 °C depending on the Mg content, chosen in agreement with dilatometry results. Presence of Mg ions was found to favour transition from HAP to β−tricalcium phosphate phase (β−TCP), which enabled formation of biphasic HAP/β−TCP and pure β−TCP phase at 160 °C during hydrothermal synthesis. In vitro investigation of antimicrobial activity against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis showed satisfactory antimicrobial activity. MTT assay performed on MRC-5 and L929 cell lines showed excellent cytocompatibility and cell proliferation. Maximum hardness by Vickers and fracture toughness values, 4.96 GPa and 1.75 MPa m1/2 respectively, were obtained upon addition of 5 mol. % Mg, as a consequence of the lowest grain size and porosity, as well as the highest densification rate. This is, to the best of our knowledge, the highest fracture toughness for HAP or β-TCP ceramics reported thus far.
PB  - Elsevier
T2  - Ceramics International
T1  - Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity
SP  - 22029
SP  - 22039
VL  - 45
IS  - 17, Part A
DO  - 10.1016/j.ceramint.2019.07.219
UR  - https://hdl.handle.net/21.15107/rcub_dais_6504
ER  - 
@article{
author = "Veljović, Đorđe and Matić, Tamara and Stamenić, Tanja and Kojić, Vesna and Dimitrijević Branković, Suzana and Lukić, Miodrag J. and Jevtić, Sanja and Radovanović, Željko and Petrović, Rada and Janaćković, Đorđe",
year = "2019",
abstract = "The aim of this study was to improve the mechanical properties and to optimize antimicrobial activity of hydroxyapatite (HAP) by simultaneous doping with Mg and Cu ions in order to obtain material that would be able to assist in the bone/tooth healing process, prevent post-implementation infections and provide satisfying values of hardness and fracture toughness for biomedical application. Ion doping was done during the hydrothermal synthesis of HAP powders, whereby the content of Mg ions in the starting solution was varied between 1-20 mol. % with regard to Ca ions, while the amount of Cu ions was kept constant at 0.4 mol. %. The green compacts were sintered for 2 h at temperatures ranging 750–1200 °C depending on the Mg content, chosen in agreement with dilatometry results. Presence of Mg ions was found to favour transition from HAP to β−tricalcium phosphate phase (β−TCP), which enabled formation of biphasic HAP/β−TCP and pure β−TCP phase at 160 °C during hydrothermal synthesis. In vitro investigation of antimicrobial activity against Escherichia coli, Staphylococcus aureus and Enterococcus faecalis showed satisfactory antimicrobial activity. MTT assay performed on MRC-5 and L929 cell lines showed excellent cytocompatibility and cell proliferation. Maximum hardness by Vickers and fracture toughness values, 4.96 GPa and 1.75 MPa m1/2 respectively, were obtained upon addition of 5 mol. % Mg, as a consequence of the lowest grain size and porosity, as well as the highest densification rate. This is, to the best of our knowledge, the highest fracture toughness for HAP or β-TCP ceramics reported thus far.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity",
pages = "22029-22039",
volume = "45",
number = "17, Part A",
doi = "10.1016/j.ceramint.2019.07.219",
url = "https://hdl.handle.net/21.15107/rcub_dais_6504"
}
Veljović, Đ., Matić, T., Stamenić, T., Kojić, V., Dimitrijević Branković, S., Lukić, M. J., Jevtić, S., Radovanović, Ž., Petrović, R.,& Janaćković, Đ.. (2019). Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity. in Ceramics International
Elsevier., 45(17, Part A), 22029.
https://doi.org/10.1016/j.ceramint.2019.07.219
https://hdl.handle.net/21.15107/rcub_dais_6504
Veljović Đ, Matić T, Stamenić T, Kojić V, Dimitrijević Branković S, Lukić MJ, Jevtić S, Radovanović Ž, Petrović R, Janaćković Đ. Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity. in Ceramics International. 2019;45(17, Part A):22029.
doi:10.1016/j.ceramint.2019.07.219
https://hdl.handle.net/21.15107/rcub_dais_6504 .
Veljović, Đorđe, Matić, Tamara, Stamenić, Tanja, Kojić, Vesna, Dimitrijević Branković, Suzana, Lukić, Miodrag J., Jevtić, Sanja, Radovanović, Željko, Petrović, Rada, Janaćković, Đorđe, "Mg/Cu co-substituted hydroxyapatite – Biocompatibility, mechanical properties and antimicrobial activity" in Ceramics International, 45, no. 17, Part A (2019):22029,
https://doi.org/10.1016/j.ceramint.2019.07.219 .,
https://hdl.handle.net/21.15107/rcub_dais_6504 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB