Дигитални архив издања САНУ
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед рада 
  •   ДАИС
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Преглед рада
  •   ДАИС
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Преглед рада
JavaScript is disabled for your browser. Some features of this site may not work without it.

Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property

Thumbnail
2019
Uskokovic2019.pdf (5.228Mb)
Аутори
Uskoković, Vuk
Tang, Sean
Nikolić, Marko G.
Marković, Smilja
Wu, Victoria M.
Чланак у часопису (Рецензирана верзија)
Метаподаци
Приказ свих података о документу
Апстракт
One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparti...cle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.

Кључне речи:
nanoparticles / antimicrobials / calcium phosphate
Извор:
Biointerphases, 2019, 14, 3, 031001-
Издавач:
  • AIP Publishing LLC
Пројекти:
  • United States National Institutes of Health (NIH) / National Institute of Dental and Craniofacial Research (NIDCR), Grant K99-DE021416
Напомена:
  • This is the peer reviewed version of the following article: Uskoković, V., Tang, S., Nikolić, M.G., Marković, S., Wu, V.M., 2019. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property. Biointerphases 14, 031001. https://doi.org/10.1116/1.5090396

DOI: 10.1116/1.5090396

ISSN: 1934-8630

WoS: 000468801600001

Scopus: 2-s2.0-85065959658
[ Google Scholar ]
16
11
URI
https://avs.scitation.org/doi/abs/10.1116/1.5090396
http://dais.sanu.ac.rs/123456789/6469
Колекције
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Институција
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Uskoković, Vuk
AU  - Tang, Sean
AU  - Nikolić, Marko G.
AU  - Marković, Smilja
AU  - Wu, Victoria M.
PY  - 2019
UR  - https://avs.scitation.org/doi/abs/10.1116/1.5090396
UR  - http://dais.sanu.ac.rs/123456789/6469
AB  - One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.
PB  - AIP Publishing LLC
T2  - Biointerphases
T1  - Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property
SP  - 031001
VL  - 14
IS  - 3
DO  - 10.1116/1.5090396
ER  - 
@article{
author = "Uskoković, Vuk and Tang, Sean and Nikolić, Marko G. and Marković, Smilja and Wu, Victoria M.",
year = "2019",
url = "https://avs.scitation.org/doi/abs/10.1116/1.5090396, http://dais.sanu.ac.rs/123456789/6469",
abstract = "One of the main goals of materials science in the 21st century is the development of materials with rationally designed properties as substitutes for traditional pharmacotherapies. At the same time, there is a lack of understanding of the exact material properties that induce therapeutic effects in biological systems, which limits their rational optimization for the related medical applications. This study sets the foundation for a general approach for elucidating nanoparticle properties as determinants of antibacterial activity, with a particular focus on calcium phosphate nanoparticles. To that end, nine physicochemical effects were studied and a number of them were refuted, thus putting an end to frequently erred hypotheses in the literature. Rather than having one key particle property responsible for eliciting the antibacterial effect, a complex synergy of factors is shown to be at work, including (a) nanoscopic size; (b) elevated intracellular free calcium levels due to nanoparticle solubility; (c) diffusivity and favorable electrostatic properties of the nanoparticle surface, primarily low net charge and high charge density; and (d) the dynamics of perpetual exchange of ultrafine clusters across the particle/solution interface. On the positive side, this multifaceted mechanism is less prone to induce bacterial resistance to the therapy and can be a gateway to the sphere of personalized medicine. On a more problematic side, it implies a less intense effect compared to single-target molecular therapies and a difficulty of elucidating the exact mechanisms of action, while also making the rational design of theirs for this type of medical application a challenge.",
publisher = "AIP Publishing LLC",
journal = "Biointerphases",
title = "Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property",
pages = "031001",
volume = "14",
number = "3",
doi = "10.1116/1.5090396"
}
Uskoković V, Tang S, Nikolić MG, Marković S, Wu VM. Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property. Biointerphases. 2019;14(3):031001
Uskoković, V., Tang, S., Nikolić, M. G., Marković, S.,& Wu, V. M. (2019). Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property.
BiointerphasesAIP Publishing LLC., 14(3), 031001.
https://doi.org/10.1116/1.5090396
Uskoković Vuk, Tang Sean, Nikolić Marko G., Marković Smilja, Wu Victoria M., "Calcium phosphate nanoparticles as intrinsic inorganic antimicrobials: In search of the key particle property" 14, no. 3 (2019):031001,
https://doi.org/10.1116/1.5090396 .

DSpace software copyright © 2002-2015  DuraSpace
О Дигиталном архиву издања САНУ (ДАИС) | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумИнституцијеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О Дигиталном архиву издања САНУ (ДАИС) | Пошаљите запажања

re3dataOpenAIRERCUB