DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method

Thumbnail
2014
589.pdf (222.7Kb)
Authors
Sierra-Fernández, Aránzazu
Flores-Carrasco, Gregorio
Gómez-Villalba, Luz Stella
Milošević, Olivera
Fort, R.
Rabanal, Maria Eugenia
Conference object (Published version)
Metadata
Show full item record
Abstract
The interest in the nanostructured magnesium hydroxide (Mg(OH)2) is rapidly growing due to the fact that its physical and chemical properties makes it appropriate for multiple applications. So far, it has been used in medicine, industry, or more recently, in the conservation of cultural heritage. The current research is based on the synthesis and the characterization of functional and nanocrystalline Mg(OH)2 with different particle sizes, morphologies and high purity. The synthesis was carried out via the hydrothermal method using hydrazine hydrate as a precipitator. Moreover, due to it is essential to study the behaviour of this type of nanoparticles under factors as the time of exposition, the relative humidity and CO2 concentration, they were exposed to controlled atmosphere at high relative humidity (75%RH). The carbonation process was also studied, identifying the different magnesium carbonate polymorphs.The physical and chemical property of synthesizedMg(OH)2 nanoparticles have b...een characterized by X Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High resolution Transmission electron Microscopy (HR-TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The results showed the successful use of this synthesis route to obtain Mg(OH)2 nanostructured with important properties for the preservation of the stone heritage and promising CO2 adsorption properties.

Keywords:
magnesium hydroxide / Mg(OH)2 / hydrothermal synthesis
Source:
Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014, 2014, 52-52
Publisher:
  • Belgrade : Serbian Ceramic Society
Funding / projects:
  • Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)

ISBN: 9788691562724

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_592
URI
https://dais.sanu.ac.rs/123456789/592
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Sierra-Fernández, Aránzazu
AU  - Flores-Carrasco, Gregorio
AU  - Gómez-Villalba, Luz Stella
AU  - Milošević, Olivera
AU  - Fort, R.
AU  - Rabanal, Maria Eugenia
PY  - 2014
UR  - https://dais.sanu.ac.rs/123456789/592
AB  - The interest in the nanostructured magnesium hydroxide (Mg(OH)2) is rapidly growing due to the fact that its physical and chemical properties makes it appropriate for multiple applications. So far, it has been used in medicine, industry, or more recently, in the conservation of cultural heritage. The current research is based on the synthesis and the characterization of functional and nanocrystalline Mg(OH)2 with different particle sizes, morphologies and high purity. The synthesis was carried out via the hydrothermal method using hydrazine hydrate as a precipitator. Moreover, due to it is essential to study the behaviour of this type of nanoparticles under factors as the time of exposition, the relative humidity and CO2 concentration, they were exposed to controlled atmosphere at high relative humidity (75%RH). The carbonation process was also studied, identifying the different magnesium carbonate polymorphs.The physical and chemical property of synthesizedMg(OH)2 nanoparticles have been characterized by X Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High resolution Transmission electron Microscopy (HR-TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The results showed the successful use of this synthesis route to obtain Mg(OH)2 nanostructured with important properties for the preservation of the stone heritage and promising CO2 adsorption properties.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014
T1  - Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method
SP  - 52
EP  - 52
UR  - https://hdl.handle.net/21.15107/rcub_dais_592
ER  - 
@conference{
author = "Sierra-Fernández, Aránzazu and Flores-Carrasco, Gregorio and Gómez-Villalba, Luz Stella and Milošević, Olivera and Fort, R. and Rabanal, Maria Eugenia",
year = "2014",
abstract = "The interest in the nanostructured magnesium hydroxide (Mg(OH)2) is rapidly growing due to the fact that its physical and chemical properties makes it appropriate for multiple applications. So far, it has been used in medicine, industry, or more recently, in the conservation of cultural heritage. The current research is based on the synthesis and the characterization of functional and nanocrystalline Mg(OH)2 with different particle sizes, morphologies and high purity. The synthesis was carried out via the hydrothermal method using hydrazine hydrate as a precipitator. Moreover, due to it is essential to study the behaviour of this type of nanoparticles under factors as the time of exposition, the relative humidity and CO2 concentration, they were exposed to controlled atmosphere at high relative humidity (75%RH). The carbonation process was also studied, identifying the different magnesium carbonate polymorphs.The physical and chemical property of synthesizedMg(OH)2 nanoparticles have been characterized by X Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), High resolution Transmission electron Microscopy (HR-TEM), thermogravimetry (TG) and differential scanning calorimetry (DSC). The results showed the successful use of this synthesis route to obtain Mg(OH)2 nanostructured with important properties for the preservation of the stone heritage and promising CO2 adsorption properties.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014",
title = "Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method",
pages = "52-52",
url = "https://hdl.handle.net/21.15107/rcub_dais_592"
}
Sierra-Fernández, A., Flores-Carrasco, G., Gómez-Villalba, L. S., Milošević, O., Fort, R.,& Rabanal, M. E.. (2014). Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014
Belgrade : Serbian Ceramic Society., 52-52.
https://hdl.handle.net/21.15107/rcub_dais_592
Sierra-Fernández A, Flores-Carrasco G, Gómez-Villalba LS, Milošević O, Fort R, Rabanal ME. Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014. 2014;:52-52.
https://hdl.handle.net/21.15107/rcub_dais_592 .
Sierra-Fernández, Aránzazu, Flores-Carrasco, Gregorio, Gómez-Villalba, Luz Stella, Milošević, Olivera, Fort, R., Rabanal, Maria Eugenia, "Synthesis and Characterization of Magnesium Hydroxide Nanoparticles via Hydrothermal Method" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / III Serbian Ceramic Society Conference, 29th September - 1st October, Belgrade, 2014 (2014):52-52,
https://hdl.handle.net/21.15107/rcub_dais_592 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB