DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs

Authorized Users Only
2019
Authors
Janićijević, Željko
Ninkov, Marina
Kataranovski, Milena
Radovanović, Filip
Article (Published version)
Metadata
Show full item record
Abstract
Poly(DL-lactide-co-ε-caprolactone)/poly(acrylic acid) implantable composite reservoirs for cationic drugs are synthesized by sequentially applying photoirradiation and liquid phase inversion. The chemical composition and microstructure of reservoirs are characterized with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and scanning electron microscopy (SEM), respectively. Drug loading and release properties are investigated using methylene blue as the drug model. Biocompatibility of reservoirs is examined through a series of in vitro tests and an in vivo experiment of subcutaneous implantation in Dark Agouti rats. Reservoirs show good ion-exchange capacity, high water content, and fast reversible swelling with retained geometry. Results of drug loading and release reveal excellent loading efficiency and diffusion-controlled release during 2 weeks. Biocompatibility tests in vitro demonstrate the lack of implant proinflammatory potential and hindered adhesi...on of L929 cells on the implant surface. Implants exhibit low acute toxicity and elicit a normal acute foreign body reaction that reaches the early stages of fibrous capsule formation after 7 days. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords:
biocompatibility / diffusion / drug delivery systems / hydrogels / ion exchangers
Source:
Macromolecular Bioscience, 2019, 19, 1800322-
Publisher:
  • Wiley
Funding / projects:
  • Immunomodulatory effects of environmental xenobiotics and biotic factors on the populations of mouse-like rodents (RS-173039)
Note:
  • Peer-reviewed manuscript: https://hdl.handle.net/21.15107/rcub_dais_4714
  • Supporting information: https://hdl.handle.net/21.15107/rcub_dais_3757

DOI: 10.1002/mabi.201800322

ISSN: 1616-5187 (Print); 1616-5195 (Online)

PubMed: 30548776

WoS: 000458369000009

Scopus: 2-s2.0-85058409832
[ Google Scholar ]
6
6
Handle
https://hdl.handle.net/21.15107/rcub_dais_5253
URI
https://dais.sanu.ac.rs/123456789/5253
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Janićijević, Željko
AU  - Ninkov, Marina
AU  - Kataranovski, Milena
AU  - Radovanović, Filip
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/5253
AB  - Poly(DL-lactide-co-ε-caprolactone)/poly(acrylic acid) implantable composite reservoirs for cationic drugs are synthesized by sequentially applying photoirradiation and liquid phase inversion. The chemical composition and microstructure of reservoirs are characterized with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and scanning electron microscopy (SEM), respectively. Drug loading and release properties are investigated using methylene blue as the drug model. Biocompatibility of reservoirs is examined through a series of in vitro tests and an in vivo experiment of subcutaneous implantation in Dark Agouti rats. Reservoirs show good ion-exchange capacity, high water content, and fast reversible swelling with retained geometry. Results of drug loading and release reveal excellent loading efficiency and diffusion-controlled release during 2 weeks. Biocompatibility tests in vitro demonstrate the lack of implant proinflammatory potential and hindered adhesion of L929 cells on the implant surface. Implants exhibit low acute toxicity and elicit a normal acute foreign body reaction that reaches the early stages of fibrous capsule formation after 7 days. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
PB  - Wiley
T2  - Macromolecular Bioscience
T1  - Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs
SP  - 1800322
VL  - 19
DO  - 10.1002/mabi.201800322
UR  - https://hdl.handle.net/21.15107/rcub_dais_5253
ER  - 
@article{
author = "Janićijević, Željko and Ninkov, Marina and Kataranovski, Milena and Radovanović, Filip",
year = "2019",
abstract = "Poly(DL-lactide-co-ε-caprolactone)/poly(acrylic acid) implantable composite reservoirs for cationic drugs are synthesized by sequentially applying photoirradiation and liquid phase inversion. The chemical composition and microstructure of reservoirs are characterized with Fourier transform infrared spectroscopy-attenuated total reflection (FTIR-ATR) and scanning electron microscopy (SEM), respectively. Drug loading and release properties are investigated using methylene blue as the drug model. Biocompatibility of reservoirs is examined through a series of in vitro tests and an in vivo experiment of subcutaneous implantation in Dark Agouti rats. Reservoirs show good ion-exchange capacity, high water content, and fast reversible swelling with retained geometry. Results of drug loading and release reveal excellent loading efficiency and diffusion-controlled release during 2 weeks. Biocompatibility tests in vitro demonstrate the lack of implant proinflammatory potential and hindered adhesion of L929 cells on the implant surface. Implants exhibit low acute toxicity and elicit a normal acute foreign body reaction that reaches the early stages of fibrous capsule formation after 7 days. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim",
publisher = "Wiley",
journal = "Macromolecular Bioscience",
title = "Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs",
pages = "1800322",
volume = "19",
doi = "10.1002/mabi.201800322",
url = "https://hdl.handle.net/21.15107/rcub_dais_5253"
}
Janićijević, Ž., Ninkov, M., Kataranovski, M.,& Radovanović, F.. (2019). Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs. in Macromolecular Bioscience
Wiley., 19, 1800322.
https://doi.org/10.1002/mabi.201800322
https://hdl.handle.net/21.15107/rcub_dais_5253
Janićijević Ž, Ninkov M, Kataranovski M, Radovanović F. Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs. in Macromolecular Bioscience. 2019;19:1800322.
doi:10.1002/mabi.201800322
https://hdl.handle.net/21.15107/rcub_dais_5253 .
Janićijević, Željko, Ninkov, Marina, Kataranovski, Milena, Radovanović, Filip, "Poly(DL-Lactide-co-ε-Caprolactone)/Poly(Acrylic Acid) Composite Implant for Controlled Delivery of Cationic Drugs" in Macromolecular Bioscience, 19 (2019):1800322,
https://doi.org/10.1002/mabi.201800322 .,
https://hdl.handle.net/21.15107/rcub_dais_5253 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB