DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Influence of synthesis parameters and thermal treatment on functional properties of Fe3O4-BaTiO3 multiferroics obtained by mechanical activation

Thumbnail
2017
Vasic_ACAVI.pdf (275.2Kb)
Authors
Vasić, M.
Kosić, O.
Kosanović, Darko
Maričić, Aleksa
Minić, Dragica M.
Conference object (Published version)
Metadata
Show full item record
Abstract
Mechanical activation of a mixture of polycrystalline powders Fe3O4 (50% wt.) and BaTiO3 (50% wt.) was performed in a planetary ball-mill, with different milling times (3 h, 6 h and 12 h). Average crystallite size determined by XRD analysis ranges from 12 to 30 nm, depending on the milling time. The activated powders were pressed into disc-shaped samples, 8 mm in diameter and 1.5 mm thick, applying the pressure of 500 MPa,. Thermoelectric measurements conducted in the temperature range from room temperature to 350 °C revealed that the electrical resistivity of the sample depends on temperature and activation time. At room temperature, the maximum value of specific electrical resistivity (ρ0 = 1 MΩm) was observed for the sample obtained by pressing the powder activated for 6 h. Magnetic properties of pressed powder samples were studied using a modified Faraday method. At room temperature, the pressed powder activated for 3 h exhibited the maximum value of magnetization, M0= 0.86 Am2/kg.... Multiple heating of the pressed samples, for 10 min, was performed in a magnetic field of 20 KA/m. After cooling, the highest magnetization values were observed for the samples previously heated at 380 °C, while the maximum one (M’= 1.04 Am2/kg) corresponds to the sample activated for 3 h.

Keywords:
Fe3O4-BaTiO3 / multiferroics / mechanical activation / ball milling
Source:
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017, 2017, 74-74
Publisher:
  • Belgrade : Serbian Ceramic Society
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)

ISBN: 978-86-915627-5-5

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_4826
URI
https://dais.sanu.ac.rs/123456789/4826
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Vasić, M.
AU  - Kosić, O.
AU  - Kosanović, Darko
AU  - Maričić, Aleksa
AU  - Minić, Dragica M.
PY  - 2017
UR  - https://dais.sanu.ac.rs/123456789/4826
AB  - Mechanical activation of a mixture of polycrystalline powders Fe3O4 (50% wt.) and BaTiO3 (50% wt.) was performed in a planetary ball-mill, with different milling times (3 h, 6 h and 12 h). Average crystallite size determined by XRD analysis ranges from 12 to 30 nm, depending on the milling time. The activated powders were pressed into disc-shaped samples, 8 mm in diameter and 1.5 mm thick, applying the pressure of 500 MPa,. Thermoelectric measurements conducted in the temperature range from room temperature to 350 °C revealed that the electrical resistivity of the sample depends on temperature and activation time. At room temperature, the maximum value of specific electrical resistivity (ρ0 = 1 MΩm) was observed for the sample obtained by pressing the powder activated for 6 h. Magnetic properties of pressed powder samples were studied using a modified Faraday method. At room temperature, the pressed powder activated for 3 h exhibited the maximum value of magnetization, M0= 0.86 Am2/kg. Multiple heating of the pressed samples, for 10 min, was performed in a magnetic field of 20 KA/m. After cooling, the highest magnetization values were observed for the samples previously heated at 380 °C, while the maximum one (M’= 1.04 Am2/kg) corresponds to the sample activated for 3 h.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - Influence of synthesis parameters and thermal treatment on functional properties of Fe3O4-BaTiO3 multiferroics obtained by mechanical activation
SP  - 74
EP  - 74
UR  - https://hdl.handle.net/21.15107/rcub_dais_4826
ER  - 
@conference{
author = "Vasić, M. and Kosić, O. and Kosanović, Darko and Maričić, Aleksa and Minić, Dragica M.",
year = "2017",
abstract = "Mechanical activation of a mixture of polycrystalline powders Fe3O4 (50% wt.) and BaTiO3 (50% wt.) was performed in a planetary ball-mill, with different milling times (3 h, 6 h and 12 h). Average crystallite size determined by XRD analysis ranges from 12 to 30 nm, depending on the milling time. The activated powders were pressed into disc-shaped samples, 8 mm in diameter and 1.5 mm thick, applying the pressure of 500 MPa,. Thermoelectric measurements conducted in the temperature range from room temperature to 350 °C revealed that the electrical resistivity of the sample depends on temperature and activation time. At room temperature, the maximum value of specific electrical resistivity (ρ0 = 1 MΩm) was observed for the sample obtained by pressing the powder activated for 6 h. Magnetic properties of pressed powder samples were studied using a modified Faraday method. At room temperature, the pressed powder activated for 3 h exhibited the maximum value of magnetization, M0= 0.86 Am2/kg. Multiple heating of the pressed samples, for 10 min, was performed in a magnetic field of 20 KA/m. After cooling, the highest magnetization values were observed for the samples previously heated at 380 °C, while the maximum one (M’= 1.04 Am2/kg) corresponds to the sample activated for 3 h.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "Influence of synthesis parameters and thermal treatment on functional properties of Fe3O4-BaTiO3 multiferroics obtained by mechanical activation",
pages = "74-74",
url = "https://hdl.handle.net/21.15107/rcub_dais_4826"
}
Vasić, M., Kosić, O., Kosanović, D., Maričić, A.,& Minić, D. M.. (2017). Influence of synthesis parameters and thermal treatment on functional properties of Fe3O4-BaTiO3 multiferroics obtained by mechanical activation. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
Belgrade : Serbian Ceramic Society., 74-74.
https://hdl.handle.net/21.15107/rcub_dais_4826
Vasić M, Kosić O, Kosanović D, Maričić A, Minić DM. Influence of synthesis parameters and thermal treatment on functional properties of Fe3O4-BaTiO3 multiferroics obtained by mechanical activation. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:74-74.
https://hdl.handle.net/21.15107/rcub_dais_4826 .
Vasić, M., Kosić, O., Kosanović, Darko, Maričić, Aleksa, Minić, Dragica M., "Influence of synthesis parameters and thermal treatment on functional properties of Fe3O4-BaTiO3 multiferroics obtained by mechanical activation" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 (2017):74-74,
https://hdl.handle.net/21.15107/rcub_dais_4826 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB