Дигитални архив издања САНУ
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед рада 
  •   ДАИС
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Преглед рада
  •   ДАИС
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Преглед рада
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP

Thumbnail
2017
Munoz-Fernandez_ACAVI.pdf (267.2Kb)
Аутори
Muñoz-Fernandez, Lidia
Alkan, G.
Milošević, Olivera
Rabanal, Maria Eugenia
Friedrich, B.
Конференцијски прилог (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement o...f photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure.

Кључне речи:
core-shell nanoparticles / ZnO:Ag / ultrasonic spray pyrolysis / photocatalytic properties
Извор:
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017, 2017, 58-58
Издавач:
  • Belgrade : Serbian Ceramic Society
Пројекти:
  • Autonomous Region Program of Madrid, Spain, MULTIMAT-CHALLENGE (ref. S2013/MIT-2862)
  • Рационални дизајн и синтеза биолошки активних и координационих једињења и функционалних материјала, релевантних у (био)нанотехнологији (RS-172035)
  • Материјали редуковане димензионалности за ефикасну апсорпцију светлости и конверзију енергије (RS-45020)

ISBN: 978-86-915627-5-5

[ Google Scholar ]
URI
http://dais.sanu.ac.rs/123456789/4775
Колекције
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Институција
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Muñoz-Fernandez, Lidia
AU  - Alkan, G.
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
AU  - Friedrich, B.
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/4775
AB  - Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement of photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP
SP  - 58
EP  - 58
ER  - 
@conference{
author = "Muñoz-Fernandez, Lidia and Alkan, G. and Milošević, Olivera and Rabanal, Maria Eugenia and Friedrich, B.",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/4775",
abstract = "Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement of photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP",
pages = "58-58"
}
Muñoz-Fernandez L, Alkan G, Milošević O, Rabanal ME, Friedrich B. Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP. Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:58-58
Muñoz-Fernandez, L., Alkan, G., Milošević, O., Rabanal, M. E.,& Friedrich, B. (2017). Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP.
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017Belgrade : Serbian Ceramic Society., null, 58-58. 
Muñoz-Fernandez Lidia, Alkan G., Milošević Olivera, Rabanal Maria Eugenia, Friedrich B., "Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP" null (2017):58-58

DSpace software copyright © 2002-2015  DuraSpace
О Дигиталном архиву издања САНУ (ДАИС) | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумИнституцијеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О Дигиталном архиву издања САНУ (ДАИС) | Пошаљите запажања

re3dataOpenAIRERCUB