Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP
Conference object (Published version)
Metadata
Show full item recordAbstract
Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement o...f photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure.
Keywords:
core-shell nanoparticles / ZnO:Ag / ultrasonic spray pyrolysis / photocatalytic propertiesSource:
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017, 2017, 58-58Publisher:
- Belgrade : Serbian Ceramic Society
Funding / projects:
- Autonomous Region Program of Madrid, Spain, MULTIMAT-CHALLENGE (ref. S2013/MIT-2862)
- Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
- Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Muñoz-Fernandez, Lidia AU - Alkan, G. AU - Milošević, Olivera AU - Rabanal, Maria Eugenia AU - Friedrich, B. PY - 2017 UR - https://dais.sanu.ac.rs/123456789/4775 AB - Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement of photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure. PB - Belgrade : Serbian Ceramic Society C3 - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 T1 - Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP SP - 58 EP - 58 UR - https://hdl.handle.net/21.15107/rcub_dais_4775 ER -
@conference{ author = "Muñoz-Fernandez, Lidia and Alkan, G. and Milošević, Olivera and Rabanal, Maria Eugenia and Friedrich, B.", year = "2017", abstract = "Synthesis of ZnO:Ag core-shell nanoparticles were performed by ultrasonic spray pyrolysis (USP) from the corresponding nitrate solutions. Varying relative concentrations of Ag and ZnO precursors and two different equipment installation, allowing either common (single-step) or separate precipitation (two-steps) of Ag and ZnO, were examined in terms of their effect on final microstructure and photocatalytic properties using X-ray powder diffraction (XRPD), scanning and transmission electron microscopy (SEM, TEM, HRTEM), UV-Vis spectroscopy and photocatalytic tests. Formation of phase-pure ZnO:Ag core- shell like particles where ZnO secondary submicron sized particles formed by primary crystals with the size of 5-20 nm were confirmed by TEM analyses. Structural analyses revealed variations in silver distribution and morphology within ZnO core depending on experimental conditions. Samples with fine and uniform silver distribution on ZnO surface display a strong silver-induced enhancement of photocatalytic performance and exhibits a significantly improved photocatalytic activity in the degradation of methyl blue (MB) than that of other noble metal free ZnO systems. Photocatalytic analyses (all samples reached > 45% MB degradation) confirm the all synthesized ZnO:Ag USP systems viability for environmental applications. The best result (93% of dye elimination) is obtained for sample exhibiting maximum available surface, which strongly depends on particle morphology, size and distribution. Moreover, all samples synthesized by single-step USP revealed higher dye elimination with respect to ones with two- steps USP due to favored distribution of silver in microstructure.", publisher = "Belgrade : Serbian Ceramic Society", journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017", title = "Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP", pages = "58-58", url = "https://hdl.handle.net/21.15107/rcub_dais_4775" }
Muñoz-Fernandez, L., Alkan, G., Milošević, O., Rabanal, M. E.,& Friedrich, B.. (2017). Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 Belgrade : Serbian Ceramic Society., 58-58. https://hdl.handle.net/21.15107/rcub_dais_4775
Muñoz-Fernandez L, Alkan G, Milošević O, Rabanal ME, Friedrich B. Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP. in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:58-58. https://hdl.handle.net/21.15107/rcub_dais_4775 .
Muñoz-Fernandez, Lidia, Alkan, G., Milošević, Olivera, Rabanal, Maria Eugenia, Friedrich, B., "Synthesis of ZnO:Ag core-shell nanoparticles with enhanced photocatalytic properties by single - and two-steps USP" in Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017 (2017):58-58, https://hdl.handle.net/21.15107/rcub_dais_4775 .