DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Zinc oxide-based materials with enhanced sunlight-driven photo- and photo-electro-catalytic activity

Thumbnail
2017
Markovic_ACAVI.pdf (267.8Kb)
Authors
Marković, Smilja
Rajić, Vladimir B.
Stojković Simatović, Ivana
Uskoković, Dragan
Conference object (Published version)
Metadata
Show full item record
Abstract
Current trend in photocatalysis is to develop efficient semiconductors which can be activated by absorbing sunlight. Which wavelength of sunlight will be absorbed depends on the semiconductor band gap; semiconductors with a wide band gap (> 3 eV) can absorb only UV light (5% of sunlight), while those with a narrow band gap (< 3 eV) can be activated by visible light (45% of sunlight). Zinc oxide (ZnO) is promising semiconductor with band gap of 3.37 eV. Various approaches have been applied to modify its optical properties, for example: incorporation of different metal and nonmetal ions or defects into the crystal structure, particles’ surface sensitization or hydrogenation. In this study, we examined the influence of different defects present in ZnO particles on their photo- and photo-electro-catalytic properties. Processing of ZnO particles were carried out in order to introduce: (1) lattice defects, through microwave procedure, (2) surface defects, through mechanical activation, and (...3) surface defects, trough composite with polyethylene oxide. Synthesized particles were characterized by XRD, FESEM, laser diffraction particle size analyzer, Raman, UV-Vis diffuse reflectance and photoluminescence spectroscopy. The results of achieved photo- and photo-electro-catalytic tests indicate that both, structural and surface, defects enhanced sunlight-driven activity of ZnO particles.

Keywords:
zinc oxide / photocatalysis / semiconductors
Source:
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017, 2017, 57-57
Publisher:
  • Belgrade : Serbian Ceramic Society
Projects:
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)

ISBN: 978-86-915627-5-5

[ Google Scholar ]
URI
http://dais.sanu.ac.rs/123456789/4773
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Marković, Smilja
AU  - Rajić, Vladimir B.
AU  - Stojković Simatović, Ivana
AU  - Uskoković, Dragan
PY  - 2017
UR  - http://dais.sanu.ac.rs/123456789/4773
AB  - Current trend in photocatalysis is to develop efficient semiconductors which can be activated by absorbing sunlight. Which wavelength of sunlight will be absorbed depends on the semiconductor band gap; semiconductors with a wide band gap (> 3 eV) can absorb only UV light (5% of sunlight), while those with a narrow band gap (< 3 eV) can be activated by visible light (45% of sunlight). Zinc oxide (ZnO) is promising semiconductor with band gap of 3.37 eV. Various approaches have been applied to modify its optical properties, for example: incorporation of different metal and nonmetal ions or defects into the crystal structure, particles’ surface sensitization or hydrogenation. In this study, we examined the influence of different defects present in ZnO particles on their photo- and photo-electro-catalytic properties. Processing of ZnO particles were carried out in order to introduce: (1) lattice defects, through microwave procedure, (2) surface defects, through mechanical activation, and (3) surface defects, trough composite with polyethylene oxide. Synthesized particles were characterized by XRD, FESEM, laser diffraction particle size analyzer, Raman, UV-Vis diffuse reflectance and photoluminescence spectroscopy. The results of achieved photo- and photo-electro-catalytic tests indicate that both, structural and surface, defects enhanced sunlight-driven activity of ZnO particles.
PB  - Belgrade : Serbian Ceramic Society
C3  - Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017
T1  - Zinc oxide-based materials with enhanced sunlight-driven photo- and photo-electro-catalytic activity
SP  - 57
EP  - 57
ER  - 
@conference{
author = "Marković, Smilja and Rajić, Vladimir B. and Stojković Simatović, Ivana and Uskoković, Dragan",
year = "2017",
url = "http://dais.sanu.ac.rs/123456789/4773",
abstract = "Current trend in photocatalysis is to develop efficient semiconductors which can be activated by absorbing sunlight. Which wavelength of sunlight will be absorbed depends on the semiconductor band gap; semiconductors with a wide band gap (> 3 eV) can absorb only UV light (5% of sunlight), while those with a narrow band gap (< 3 eV) can be activated by visible light (45% of sunlight). Zinc oxide (ZnO) is promising semiconductor with band gap of 3.37 eV. Various approaches have been applied to modify its optical properties, for example: incorporation of different metal and nonmetal ions or defects into the crystal structure, particles’ surface sensitization or hydrogenation. In this study, we examined the influence of different defects present in ZnO particles on their photo- and photo-electro-catalytic properties. Processing of ZnO particles were carried out in order to introduce: (1) lattice defects, through microwave procedure, (2) surface defects, through mechanical activation, and (3) surface defects, trough composite with polyethylene oxide. Synthesized particles were characterized by XRD, FESEM, laser diffraction particle size analyzer, Raman, UV-Vis diffuse reflectance and photoluminescence spectroscopy. The results of achieved photo- and photo-electro-catalytic tests indicate that both, structural and surface, defects enhanced sunlight-driven activity of ZnO particles.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017",
title = "Zinc oxide-based materials with enhanced sunlight-driven photo- and photo-electro-catalytic activity",
pages = "57-57"
}
Marković S, Rajić VB, Stojković Simatović I, Uskoković D. Zinc oxide-based materials with enhanced sunlight-driven photo- and photo-electro-catalytic activity. Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017. 2017;:57-57
Marković, S., Rajić, V. B., Stojković Simatović, I.,& Uskoković, D. (2017). Zinc oxide-based materials with enhanced sunlight-driven photo- and photo-electro-catalytic activity.
Program and the Book of Abstracts / Serbian Ceramic Society Conference Advanced Ceramics and Application VI: New Frontiers in Multifunctional Material Science and Processing, Serbia, Belgrade, September 18-20, 2017Belgrade : Serbian Ceramic Society., null, 57-57. 
Marković Smilja, Rajić Vladimir B., Stojković Simatović Ivana, Uskoković Dragan, "Zinc oxide-based materials with enhanced sunlight-driven photo- and photo-electro-catalytic activity" null (2017):57-57

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB