DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biodegradable microparticles as scaffolds for cell therapy

Thumbnail
2018
Filipovic-17YRC2018.pdf (1.012Mb)
Authors
Filipović, Nenad
Digilio, Giuseppe
Catanzaro, Valeria
Capuana, Federico
Cutrin, Juan C.
Carniato, Fabio
Porta, Stefano
Grange, Cristina
Stevanović, Magdalena
Conference object (Published version)
Metadata
Show full item record
Abstract
Cell therapy is promising strategy that has attracted a lot of attention recently regarding regeneration of diverse tissues and treatment of various pathological conditions. Despite its great potential, several issues still need to be addressed. Among them administration route and dose, microenvironment conditions and host immune response are recognized as a major causes which lead to cells transplantation failure. In this work it is presented novel microstructural system based on biodegradable polymer poly(lactide-co-glycolide) (PLGA) and combination of biocompatible polyvinyl alcohol (PVA) and chitosan, as a scaffold for human mesenchymal stem cells (hMSCs) growth. The obtained microparticles with diameter 200-600 μm showed full biocompatibility with human hMSCs. Besides serving as a solid support, polymeric particles provided controlled release of contrast agent - gadolinium fluoride nanoparticles (Gd-NP) up to 5 weeks. The release of Gd-NP is enhanced by acidic conditions. Magnetic... Resonance Imaging (MRI) of the samples embedded in 1% agar showed that contrast enhancement in T1-weighted (T1w) MR images is influenced by the amount of released Gd-NP. Based on these preliminary results, presented theranostic system could be considered for cells grafting.

Keywords:
cell therapy / biodegradable microparticles / scaffolds / poly(lactide-co-glycolide / PLGA / polyvinyl alcohol / PVA / chitosan / mesenchymal stem cells / hMSCs / Magnetic Resonance Imaging
Source:
Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia, 2018, 7-7
Publisher:
  • Belgrade : Institute of Technical Sciences of SASA
Projects:
  • Italian Ministry of Foreign Affairs and International Cooperation (MAECI) within the collaboration framework between Italy and the Republic of Serbia (project PGR02952, call “Grande Rilevanza”)
  • Italian Ministry of University and Education, PRIN-2010 n. 2010B5B2NL
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)

ISBN: 978-86-80321-34-9

[ Google Scholar ]
URI
http://dais.sanu.ac.rs/123456789/4721
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Filipović, Nenad
AU  - Digilio, Giuseppe
AU  - Catanzaro, Valeria
AU  - Capuana, Federico
AU  - Cutrin, Juan C.
AU  - Carniato, Fabio
AU  - Porta, Stefano
AU  - Grange, Cristina
AU  - Stevanović, Magdalena
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4721
AB  - Cell therapy is promising strategy that has attracted a lot of attention recently regarding regeneration of diverse tissues and treatment of various pathological conditions. Despite its great potential, several issues still need to be addressed. Among them administration route and dose, microenvironment conditions and host immune response are recognized as a major causes which lead to cells transplantation failure. In this work it is presented novel microstructural system based on biodegradable polymer poly(lactide-co-glycolide) (PLGA) and combination of biocompatible polyvinyl alcohol (PVA) and chitosan, as a scaffold for human mesenchymal stem cells (hMSCs) growth. The obtained microparticles with diameter 200-600 μm showed full biocompatibility with human hMSCs. Besides serving as a solid support, polymeric particles provided controlled release of contrast agent - gadolinium fluoride nanoparticles (Gd-NP) up to 5 weeks. The release of Gd-NP is enhanced by acidic conditions. Magnetic Resonance Imaging (MRI) of the samples embedded in 1% agar showed that contrast enhancement in T1-weighted (T1w) MR images is influenced by the amount of released Gd-NP. Based on these preliminary results, presented theranostic system could be considered for cells grafting.
PB  - Belgrade : Institute of Technical Sciences of SASA
C3  - Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia
T1  - Biodegradable microparticles as scaffolds for cell therapy
SP  - 7
EP  - 7
ER  - 
@conference{
author = "Filipović, Nenad and Digilio, Giuseppe and Catanzaro, Valeria and Capuana, Federico and Cutrin, Juan C. and Carniato, Fabio and Porta, Stefano and Grange, Cristina and Stevanović, Magdalena",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4721",
abstract = "Cell therapy is promising strategy that has attracted a lot of attention recently regarding regeneration of diverse tissues and treatment of various pathological conditions. Despite its great potential, several issues still need to be addressed. Among them administration route and dose, microenvironment conditions and host immune response are recognized as a major causes which lead to cells transplantation failure. In this work it is presented novel microstructural system based on biodegradable polymer poly(lactide-co-glycolide) (PLGA) and combination of biocompatible polyvinyl alcohol (PVA) and chitosan, as a scaffold for human mesenchymal stem cells (hMSCs) growth. The obtained microparticles with diameter 200-600 μm showed full biocompatibility with human hMSCs. Besides serving as a solid support, polymeric particles provided controlled release of contrast agent - gadolinium fluoride nanoparticles (Gd-NP) up to 5 weeks. The release of Gd-NP is enhanced by acidic conditions. Magnetic Resonance Imaging (MRI) of the samples embedded in 1% agar showed that contrast enhancement in T1-weighted (T1w) MR images is influenced by the amount of released Gd-NP. Based on these preliminary results, presented theranostic system could be considered for cells grafting.",
publisher = "Belgrade : Institute of Technical Sciences of SASA",
journal = "Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia",
title = "Biodegradable microparticles as scaffolds for cell therapy",
pages = "7-7"
}
Filipović N, Digilio G, Catanzaro V, Capuana F, Cutrin JC, Carniato F, Porta S, Grange C, Stevanović M. Biodegradable microparticles as scaffolds for cell therapy. Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, Serbia. 2018;:7-7
Filipović, N., Digilio, G., Catanzaro, V., Capuana, F., Cutrin, J. C., Carniato, F., Porta, S., Grange, C.,& Stevanović, M. (2018). Biodegradable microparticles as scaffolds for cell therapy.
Program and the Book of Abstracts / Seventeenth Young Researchers' Conference Materials Sciences and Engineering, December 5-7, 2018, Belgrade, SerbiaBelgrade : Institute of Technical Sciences of SASA., null, 7-7. 
Filipović Nenad, Digilio Giuseppe, Catanzaro Valeria, Capuana Federico, Cutrin Juan C., Carniato Fabio, Porta Stefano, Grange Cristina, Stevanović Magdalena, "Biodegradable microparticles as scaffolds for cell therapy" null (2018):7-7

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB