Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties
Authors
Flores-Carrasco, Gregorio
Urbieta, A.
Fernandez, P.
Milošević, Olivera

Rabanal, Maria Eugenia

Conference object (Published version)
Metadata
Show full item recordAbstract
Semiconductor nanoparticles (NPs) and nanowires (NWs) of doped ZnO system have been synthesised at low temperature (190 °C) by a novel Polyol-Mediated Thermolysis (PMT) process and Vapour-Solid (VS) reaction. Ce/Ru doped ZnO NPs with different molar content (1-3--5-10%) have been synthesised by both experimental processes. The crystallite size, morphology, specific surface area and band gap have been evaluated. Also, the structural and functional characteristics were carried out by X-ray diffraction technique (XRD), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV-Vis diffuse reflectance spectra (DRS), UV-Vis spectroscopy and photoluminescence measurements (PL). Also, the photocatalytic activities of ZnO nanoparticles were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at RT. XRD patterns revealed a hexagonal ZnO wurtzite-type crystalline structure with a preferred orientation of(101) plane. Any second...ary phases have been identified such as Ce02, Ce203, ee, Ru02, Ru304, Ru. HRTEM showed NPs in shape from spherical/ellipsoidal to hexagonal, that does not change significantly with the increasing of precursor solution concentration and kind of dopant element in the samples obtained from PMTprocess. The size of NPs was observed in the range from 16 to 23 run. Using the Kubelka-Munk treatment on the diffuse reflectance spectra, the direct band energy has been estimated at <3.0 eV in the Ru-doped samples. The PL spectra mainly consist of four emission bands: (i) a strong UV emission band, (ii) a weak blue band, (iii) a blue-green band and (iv) a green-yellow band, respectively. The reported results showed the photocatalytic efficiency of doped ZnO nanoparticles was always enhanced.
Keywords:
semiconductor materials / nanostructured materials / doped ZnO systemsSource:
ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts, 2018, 119-119Publisher:
- ICCCI
Funding / projects:
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASATY - CONF AU - Flores-Carrasco, Gregorio AU - Urbieta, A. AU - Fernandez, P. AU - Milošević, Olivera AU - Rabanal, Maria Eugenia PY - 2018 UR - https://dais.sanu.ac.rs/123456789/4677 AB - Semiconductor nanoparticles (NPs) and nanowires (NWs) of doped ZnO system have been synthesised at low temperature (190 °C) by a novel Polyol-Mediated Thermolysis (PMT) process and Vapour-Solid (VS) reaction. Ce/Ru doped ZnO NPs with different molar content (1-3--5-10%) have been synthesised by both experimental processes. The crystallite size, morphology, specific surface area and band gap have been evaluated. Also, the structural and functional characteristics were carried out by X-ray diffraction technique (XRD), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV-Vis diffuse reflectance spectra (DRS), UV-Vis spectroscopy and photoluminescence measurements (PL). Also, the photocatalytic activities of ZnO nanoparticles were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at RT. XRD patterns revealed a hexagonal ZnO wurtzite-type crystalline structure with a preferred orientation of(101) plane. Any secondary phases have been identified such as Ce02, Ce203, ee, Ru02, Ru304, Ru. HRTEM showed NPs in shape from spherical/ellipsoidal to hexagonal, that does not change significantly with the increasing of precursor solution concentration and kind of dopant element in the samples obtained from PMTprocess. The size of NPs was observed in the range from 16 to 23 run. Using the Kubelka-Munk treatment on the diffuse reflectance spectra, the direct band energy has been estimated at <3.0 eV in the Ru-doped samples. The PL spectra mainly consist of four emission bands: (i) a strong UV emission band, (ii) a weak blue band, (iii) a blue-green band and (iv) a green-yellow band, respectively. The reported results showed the photocatalytic efficiency of doped ZnO nanoparticles was always enhanced. PB - ICCCI C3 - ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts T1 - Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties SP - 119 EP - 119 UR - https://hdl.handle.net/21.15107/rcub_dais_4677 ER -
@conference{ author = "Flores-Carrasco, Gregorio and Urbieta, A. and Fernandez, P. and Milošević, Olivera and Rabanal, Maria Eugenia", year = "2018", abstract = "Semiconductor nanoparticles (NPs) and nanowires (NWs) of doped ZnO system have been synthesised at low temperature (190 °C) by a novel Polyol-Mediated Thermolysis (PMT) process and Vapour-Solid (VS) reaction. Ce/Ru doped ZnO NPs with different molar content (1-3--5-10%) have been synthesised by both experimental processes. The crystallite size, morphology, specific surface area and band gap have been evaluated. Also, the structural and functional characteristics were carried out by X-ray diffraction technique (XRD), high resolution transmission electron microscopy (HRTEM), Brunauer, Emmett and Teller (BET) method, UV-Vis diffuse reflectance spectra (DRS), UV-Vis spectroscopy and photoluminescence measurements (PL). Also, the photocatalytic activities of ZnO nanoparticles were evaluated by removal rate of methyleneblue (MB) under UV irradiation (365 nm) at RT. XRD patterns revealed a hexagonal ZnO wurtzite-type crystalline structure with a preferred orientation of(101) plane. Any secondary phases have been identified such as Ce02, Ce203, ee, Ru02, Ru304, Ru. HRTEM showed NPs in shape from spherical/ellipsoidal to hexagonal, that does not change significantly with the increasing of precursor solution concentration and kind of dopant element in the samples obtained from PMTprocess. The size of NPs was observed in the range from 16 to 23 run. Using the Kubelka-Munk treatment on the diffuse reflectance spectra, the direct band energy has been estimated at <3.0 eV in the Ru-doped samples. The PL spectra mainly consist of four emission bands: (i) a strong UV emission band, (ii) a weak blue band, (iii) a blue-green band and (iv) a green-yellow band, respectively. The reported results showed the photocatalytic efficiency of doped ZnO nanoparticles was always enhanced.", publisher = "ICCCI", journal = "ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts", title = "Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties", pages = "119-119", url = "https://hdl.handle.net/21.15107/rcub_dais_4677" }
Flores-Carrasco, G., Urbieta, A., Fernandez, P., Milošević, O.,& Rabanal, M. E.. (2018). Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties. in ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts ICCCI., 119-119. https://hdl.handle.net/21.15107/rcub_dais_4677
Flores-Carrasco G, Urbieta A, Fernandez P, Milošević O, Rabanal ME. Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties. in ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts. 2018;:119-119. https://hdl.handle.net/21.15107/rcub_dais_4677 .
Flores-Carrasco, Gregorio, Urbieta, A., Fernandez, P., Milošević, Olivera, Rabanal, Maria Eugenia, "Synthesis and Characterization of functional ceramic materials at the nano- and microscale with enhanced properties" in ICCCI2018 : The 6th International Conference on the Characterization and Control ofInterfacesfor High Quality AdvancedMaterials andthe 54th Summer Symposium on Powder Technology, Kurashiki, Japan, July 9-12, 2018 : Program and Abstracts (2018):119-119, https://hdl.handle.net/21.15107/rcub_dais_4677 .