DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution

Authorized Users Only
2012
Authors
Elezović, Nevenka
Babić, Biljana M.
Gajić Krstajić, Ljiljana
Ercius, Peter
Radmilović, Velimir R.
Krstajić, Nedeljko
Vračar, Ljiljana
Article (Published version)
Metadata
Show full item record
Abstract
Platinum nanocatalyst at nano-tungsten carbide was synthesized, characterized and tested for oxygen reduction reaction (ORR) in 0.1 mol dm−3 NaOH, at 25 °C. Tungsten-carbide islands on nano-tungsten particles (WC) was synthesized from gel prepared by using nanoparticles of WO3, previously produced from W-powder oxidized in H2O2. The support was porous material with high specific surface area (177 m2 g−1). The WC supported Pt (10 wt.%) catalyst was prepared by borohydride reduction method. X-ray diffraction of the catalyst demonstrates successful reduction of Pt precursor to metallic form. STEM analysis of Pt/WC catalyst showed the existence of Pt particles lower than 2 nm in size, even the clusters of Pt atoms. Electrochemically active surface area of Pt was determined from adsorption/desorption charge of hydrogen atoms. Catalytic activity of the synthesized catalyst for ORR was studied by cyclic voltammetry and linear sweep voltammetry at rotating disk electrode. The onset... potential on Pt/WC for ORR, comparing with Pt/Vulcan, was shifted to the positive potentials for about 150 mV. Pt/WC catalyst shows one Tafel slope of −0.105 V dec−1, remarkable catalytic activity expressed either through the value of the current density per real surface area, or through the mass activity and excellent stability.

Keywords:
WC support / Pt and WC catalyst / Pt nanoparticles / oxygen reduction reaction / alkaline solution
Source:
Electrochimica Acta, 2012, 239-246
Publisher:
  • Elsevier
Projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)

DOI: 10.1016/j.electacta.2012.02.105

ISSN: 0013-4686

WoS: 000304024400033

Scopus: 2-s2.0-84859612733
[ Google Scholar ]
47
43
URI
http://dais.sanu.ac.rs/123456789/465
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Elezović, Nevenka
AU  - Babić, Biljana M.
AU  - Gajić Krstajić, Ljiljana
AU  - Ercius, Peter
AU  - Radmilović, Velimir R.
AU  - Krstajić, Nedeljko
AU  - Vračar, Ljiljana
PY  - 2012
UR  - http://dais.sanu.ac.rs/123456789/465
AB  - Platinum nanocatalyst at nano-tungsten carbide was synthesized, characterized and tested for oxygen reduction reaction (ORR) in 0.1 mol dm−3 NaOH, at 25 °C. Tungsten-carbide islands on nano-tungsten particles (WC) was synthesized from gel prepared by using nanoparticles of WO3, previously produced from W-powder oxidized in H2O2. The support was porous material with high specific surface area (177 m2 g−1).

The WC supported Pt (10 wt.%) catalyst was prepared by borohydride reduction method.

X-ray diffraction of the catalyst demonstrates successful reduction of Pt precursor to metallic form. STEM analysis of Pt/WC catalyst showed the existence of Pt particles lower than 2 nm in size, even the clusters of Pt atoms.

Electrochemically active surface area of Pt was determined from adsorption/desorption charge of hydrogen atoms.

Catalytic activity of the synthesized catalyst for ORR was studied by cyclic voltammetry and linear sweep voltammetry at rotating disk electrode. The onset potential on Pt/WC for ORR, comparing with Pt/Vulcan, was shifted to the positive potentials for about 150 mV. Pt/WC catalyst shows one Tafel slope of −0.105 V dec−1, remarkable catalytic activity expressed either through the value of the current density per real surface area, or through the mass activity and excellent stability.
PB  - Elsevier
T2  - Electrochimica Acta
T1  - Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution
SP  - 239
EP  - 246
DO  - 10.1016/j.electacta.2012.02.105
ER  - 
@article{
author = "Elezović, Nevenka and Babić, Biljana M. and Gajić Krstajić, Ljiljana and Ercius, Peter and Radmilović, Velimir R. and Krstajić, Nedeljko and Vračar, Ljiljana",
year = "2012",
url = "http://dais.sanu.ac.rs/123456789/465",
abstract = "Platinum nanocatalyst at nano-tungsten carbide was synthesized, characterized and tested for oxygen reduction reaction (ORR) in 0.1 mol dm−3 NaOH, at 25 °C. Tungsten-carbide islands on nano-tungsten particles (WC) was synthesized from gel prepared by using nanoparticles of WO3, previously produced from W-powder oxidized in H2O2. The support was porous material with high specific surface area (177 m2 g−1).

The WC supported Pt (10 wt.%) catalyst was prepared by borohydride reduction method.

X-ray diffraction of the catalyst demonstrates successful reduction of Pt precursor to metallic form. STEM analysis of Pt/WC catalyst showed the existence of Pt particles lower than 2 nm in size, even the clusters of Pt atoms.

Electrochemically active surface area of Pt was determined from adsorption/desorption charge of hydrogen atoms.

Catalytic activity of the synthesized catalyst for ORR was studied by cyclic voltammetry and linear sweep voltammetry at rotating disk electrode. The onset potential on Pt/WC for ORR, comparing with Pt/Vulcan, was shifted to the positive potentials for about 150 mV. Pt/WC catalyst shows one Tafel slope of −0.105 V dec−1, remarkable catalytic activity expressed either through the value of the current density per real surface area, or through the mass activity and excellent stability.",
publisher = "Elsevier",
journal = "Electrochimica Acta",
title = "Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution",
pages = "239-246",
doi = "10.1016/j.electacta.2012.02.105"
}
Elezović N, Babić BM, Gajić Krstajić L, Ercius P, Radmilović VR, Krstajić N, Vračar L. Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution. Electrochimica Acta. 2012;:239-246
Elezović, N., Babić, B. M., Gajić Krstajić, L., Ercius, P., Radmilović, V. R., Krstajić, N.,& Vračar, L. (2012). Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution.
Electrochimica ActaElsevier., null, 239-246. 
https://doi.org/10.1016/j.electacta.2012.02.105
Elezović Nevenka, Babić Biljana M., Gajić Krstajić Ljiljana, Ercius Peter, Radmilović Velimir R., Krstajić Nedeljko, Vračar Ljiljana, "Pt supported on nano-tungsten carbide as a beneficial catalyst for the oxygen reduction reaction in alkaline solution" null (2012):239-246,
https://doi.org/10.1016/j.electacta.2012.02.105 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB