DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthesis and characterisation of spherical core-shell Ag/ZnO nanocomposites using single and two – steps ultrasonic spray pyrolysis (USP)

Authorized Users Only
2019
Authors
Muñoz-Fernandez, Lidia
Alkan, Gözde
Milošević, Olivera
Rabanal, Maria Eugenia
Friedrich, Bernd
Article (Published version)
Metadata
Show full item record
Abstract
Spherical core-shell Ag/ZnO nanocomposites were synthesised by ultrasonic spray pyrolysis (USP) method from zinc nitrate hexahydrate, Zn(NO3)2·6H2O (ZN) and silver nitrate, AgNO3 (SN) precursors. Varying solution concentrations and equipment installations (either single − or two-step USP) allowing simultaneous and consecutive precipitation of Ag and ZnO were examined regarding their effect on final particle microstructure and photocatalytic properties. Morphological analyses revealed pure Ag/ZnO core-shell structure where ZnO secondary submicron sized particles formed by primary crystals with the size of 5–20 nm. Depending on the solution concentrations and USP installations, various distributions of Ag in the final microstructure was revealed. Photocatalytic analyses (all samples reached >45% MB degradation) confirm the all Ag/ZnO USP systems viability for environmental applications. The best result (93% of methylene blue (MB) elimination) is obtained for the sample with the maximu...m available surface, which strongly depends on particle morphology, size, and dispersion. Moreover, all samples synthesised by single step co-precipitation revealed higher dye elimination concerning ones with two steps precipitation due to the favoured distribution of silver nanoparticles in their microstructure and higher specific surface area. Moreover, samples with a uniform and homogeneous Ag distribution exhibited silver-induced enhancement of photocatalytic performance. © 2017 Elsevier B.V.

Keywords:
Ag/ZnO / sore-shell structures / ultrasonic spray pyrolysis
Source:
Catalysis Today, 2019, 321-322, 26-33
Publisher:
  • Elsevier
Funding / projects:
  • Autonomous Region Program of Madrid, Spain, MULTIMAT-CHALLENGE (ref. S2013/MIT-2862)
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
  • Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)
Note:
  • Peer-reviewed manuscript: https://hdl.handle.net/21.15107/rcub_dais_4602
  • Supporting information: https://hdl.handle.net/21.15107/rcub_dais_5973
Related info:
  • Version of
    https://hdl.handle.net/21.15107/rcub_dais_4602
  • Referenced by
    https://hdl.handle.net/21.15107/rcub_dais_5973

DOI: 10.1016/j.cattod.2017.11.029

ISSN: 0920-5861

WoS: 000451030700005

Scopus: 2-s2.0-85035353170
[ Google Scholar ]
14
13
Handle
https://hdl.handle.net/21.15107/rcub_dais_4591
URI
https://dais.sanu.ac.rs/123456789/4591
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Muñoz-Fernandez, Lidia
AU  - Alkan, Gözde
AU  - Milošević, Olivera
AU  - Rabanal, Maria Eugenia
AU  - Friedrich, Bernd
PY  - 2019
UR  - https://dais.sanu.ac.rs/123456789/4591
AB  - Spherical core-shell Ag/ZnO nanocomposites were synthesised by ultrasonic spray pyrolysis (USP) method from zinc nitrate hexahydrate, Zn(NO3)2·6H2O (ZN) and silver nitrate, AgNO3 (SN) precursors. Varying solution concentrations and equipment installations (either single − or two-step USP) allowing simultaneous and consecutive precipitation of Ag and ZnO were examined regarding their effect on final particle microstructure and photocatalytic properties. Morphological analyses revealed pure Ag/ZnO core-shell structure where ZnO secondary submicron sized particles formed by primary crystals with the size of 5–20 nm. Depending on the solution concentrations and USP installations, various distributions of Ag in the final microstructure was revealed. Photocatalytic analyses (all samples reached >45% MB degradation) confirm the all Ag/ZnO USP systems viability for environmental applications. The best result (93% of methylene blue (MB) elimination) is obtained for the sample with the maximum available surface, which strongly depends on particle morphology, size, and dispersion. Moreover, all samples synthesised by single step co-precipitation revealed higher dye elimination concerning ones with two steps precipitation due to the favoured distribution of silver nanoparticles in their microstructure and higher specific surface area. Moreover, samples with a uniform and homogeneous Ag distribution exhibited silver-induced enhancement of photocatalytic performance. © 2017 Elsevier B.V.
PB  - Elsevier
T2  - Catalysis Today
T1  - Synthesis and characterisation of spherical core-shell Ag/ZnO nanocomposites using single and two – steps ultrasonic spray pyrolysis (USP)
SP  - 26
EP  - 33
VL  - 321-322
DO  - 10.1016/j.cattod.2017.11.029
UR  - https://hdl.handle.net/21.15107/rcub_dais_4591
ER  - 
@article{
author = "Muñoz-Fernandez, Lidia and Alkan, Gözde and Milošević, Olivera and Rabanal, Maria Eugenia and Friedrich, Bernd",
year = "2019",
abstract = "Spherical core-shell Ag/ZnO nanocomposites were synthesised by ultrasonic spray pyrolysis (USP) method from zinc nitrate hexahydrate, Zn(NO3)2·6H2O (ZN) and silver nitrate, AgNO3 (SN) precursors. Varying solution concentrations and equipment installations (either single − or two-step USP) allowing simultaneous and consecutive precipitation of Ag and ZnO were examined regarding their effect on final particle microstructure and photocatalytic properties. Morphological analyses revealed pure Ag/ZnO core-shell structure where ZnO secondary submicron sized particles formed by primary crystals with the size of 5–20 nm. Depending on the solution concentrations and USP installations, various distributions of Ag in the final microstructure was revealed. Photocatalytic analyses (all samples reached >45% MB degradation) confirm the all Ag/ZnO USP systems viability for environmental applications. The best result (93% of methylene blue (MB) elimination) is obtained for the sample with the maximum available surface, which strongly depends on particle morphology, size, and dispersion. Moreover, all samples synthesised by single step co-precipitation revealed higher dye elimination concerning ones with two steps precipitation due to the favoured distribution of silver nanoparticles in their microstructure and higher specific surface area. Moreover, samples with a uniform and homogeneous Ag distribution exhibited silver-induced enhancement of photocatalytic performance. © 2017 Elsevier B.V.",
publisher = "Elsevier",
journal = "Catalysis Today",
title = "Synthesis and characterisation of spherical core-shell Ag/ZnO nanocomposites using single and two – steps ultrasonic spray pyrolysis (USP)",
pages = "26-33",
volume = "321-322",
doi = "10.1016/j.cattod.2017.11.029",
url = "https://hdl.handle.net/21.15107/rcub_dais_4591"
}
Muñoz-Fernandez, L., Alkan, G., Milošević, O., Rabanal, M. E.,& Friedrich, B.. (2019). Synthesis and characterisation of spherical core-shell Ag/ZnO nanocomposites using single and two – steps ultrasonic spray pyrolysis (USP). in Catalysis Today
Elsevier., 321-322, 26-33.
https://doi.org/10.1016/j.cattod.2017.11.029
https://hdl.handle.net/21.15107/rcub_dais_4591
Muñoz-Fernandez L, Alkan G, Milošević O, Rabanal ME, Friedrich B. Synthesis and characterisation of spherical core-shell Ag/ZnO nanocomposites using single and two – steps ultrasonic spray pyrolysis (USP). in Catalysis Today. 2019;321-322:26-33.
doi:10.1016/j.cattod.2017.11.029
https://hdl.handle.net/21.15107/rcub_dais_4591 .
Muñoz-Fernandez, Lidia, Alkan, Gözde, Milošević, Olivera, Rabanal, Maria Eugenia, Friedrich, Bernd, "Synthesis and characterisation of spherical core-shell Ag/ZnO nanocomposites using single and two – steps ultrasonic spray pyrolysis (USP)" in Catalysis Today, 321-322 (2019):26-33,
https://doi.org/10.1016/j.cattod.2017.11.029 .,
https://hdl.handle.net/21.15107/rcub_dais_4591 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB