DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix

Thumbnail
2018
Processing-and-characterization-of-UHWMPE-compositefibers.pdf (1.712Mb)
Authors
Zec, Jelena
Tomić, Nataša
Zrilić, Milorad
Marković, Smilja
Stojanović, Dušica R.
Jančić Heinemann, Radmila
Article (Accepted Version)
Metadata
Show full item record
Abstract
Processing of hybrid composites represents a challenge for engineers where the aim is to establish compatibility among several materials. The aim of this study is to evaluate the effects of different sizes and morphologies of alumina fillers on the mechanical and thermal properties of the composite fibres based on ultra-high molecular weight polyethylene fibres (UHMWPE). These fibres have an outstanding elastic modulus and they are compatible with nonpolar sequences of the poly(ethylene-co-vinyl acetate) (EVA) matrix. Compared to the fibres, inferior mechanical properties of the matrix can be improved using alumina particles. Commercial aluminium oxide (Al2O3) nanoparticles, commercial whiskers and synthesized particles of Al2O3 doped with iron oxide, incorporated in different weight percentages, were used as fillers. The UHMWPE fibres were impregnated using the solution of EVA in toluene with dispersed particles. Fourier transform infrared spectroscopy and field emission scanning elec...tron microscope were used for structural examination. Tensile testing revealed increasing of modulus of elasticity and strengths of obtained hybrid composite fibres. Thermal gravimetry showed improved thermal stability up to 350°C of the hybrid composite fibres with alumina particles doped with iron oxide. Results of tested samples showed that the best mechanical properties were for hybrid composite fibres with 1 wt% of iron doped alumina filler. © 2017, © The Author(s) 2017.

Keywords:
thermal stability / Al2O3 reinforcement / EVA matrix / hybrid composite fibres / UHMWPE
Source:
Journal of Thermoplastic Composite Materials, 2018, 31, 5, 689-708
Publisher:
  • SAGE
Funding / projects:
  • Predefined functional properties polymer composite materials processes and equipment development (RS-34011)
Note:
  • This is the peer-reviewed version of the article: Zec, J., Tomić, N., Zrilić, M., Marković, S., Stojanović, D., Jančić-Heinemann, R., 2018. Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix. Journal of Thermoplastic Composite Materials 31, 689–708. https://doi.org/10.1177/0892705717718240

DOI: 10.1177/0892705717718240

ISSN: 0892-7057

WoS: 000429893200007

Scopus: 2-s2.0-85042438011
[ Google Scholar ]
14
11
Handle
https://hdl.handle.net/21.15107/rcub_dais_4566
URI
https://dais.sanu.ac.rs/123456789/4566
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Zec, Jelena
AU  - Tomić, Nataša
AU  - Zrilić, Milorad
AU  - Marković, Smilja
AU  - Stojanović, Dušica R.
AU  - Jančić Heinemann, Radmila
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4566
AB  - Processing of hybrid composites represents a challenge for engineers where the aim is to establish compatibility among several materials. The aim of this study is to evaluate the effects of different sizes and morphologies of alumina fillers on the mechanical and thermal properties of the composite fibres based on ultra-high molecular weight polyethylene fibres (UHMWPE). These fibres have an outstanding elastic modulus and they are compatible with nonpolar sequences of the poly(ethylene-co-vinyl acetate) (EVA) matrix. Compared to the fibres, inferior mechanical properties of the matrix can be improved using alumina particles. Commercial aluminium oxide (Al2O3) nanoparticles, commercial whiskers and synthesized particles of Al2O3 doped with iron oxide, incorporated in different weight percentages, were used as fillers. The UHMWPE fibres were impregnated using the solution of EVA in toluene with dispersed particles. Fourier transform infrared spectroscopy and field emission scanning electron microscope were used for structural examination. Tensile testing revealed increasing of modulus of elasticity and strengths of obtained hybrid composite fibres. Thermal gravimetry showed improved thermal stability up to 350°C of the hybrid composite fibres with alumina particles doped with iron oxide. Results of tested samples showed that the best mechanical properties were for hybrid composite fibres with 1 wt% of iron doped alumina filler. © 2017, © The Author(s) 2017.
PB  - SAGE
T2  - Journal of Thermoplastic Composite Materials
T1  - Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix
SP  - 689
EP  - 708
VL  - 31
IS  - 5
DO  - 10.1177/0892705717718240
UR  - https://hdl.handle.net/21.15107/rcub_dais_4566
ER  - 
@article{
author = "Zec, Jelena and Tomić, Nataša and Zrilić, Milorad and Marković, Smilja and Stojanović, Dušica R. and Jančić Heinemann, Radmila",
year = "2018",
abstract = "Processing of hybrid composites represents a challenge for engineers where the aim is to establish compatibility among several materials. The aim of this study is to evaluate the effects of different sizes and morphologies of alumina fillers on the mechanical and thermal properties of the composite fibres based on ultra-high molecular weight polyethylene fibres (UHMWPE). These fibres have an outstanding elastic modulus and they are compatible with nonpolar sequences of the poly(ethylene-co-vinyl acetate) (EVA) matrix. Compared to the fibres, inferior mechanical properties of the matrix can be improved using alumina particles. Commercial aluminium oxide (Al2O3) nanoparticles, commercial whiskers and synthesized particles of Al2O3 doped with iron oxide, incorporated in different weight percentages, were used as fillers. The UHMWPE fibres were impregnated using the solution of EVA in toluene with dispersed particles. Fourier transform infrared spectroscopy and field emission scanning electron microscope were used for structural examination. Tensile testing revealed increasing of modulus of elasticity and strengths of obtained hybrid composite fibres. Thermal gravimetry showed improved thermal stability up to 350°C of the hybrid composite fibres with alumina particles doped with iron oxide. Results of tested samples showed that the best mechanical properties were for hybrid composite fibres with 1 wt% of iron doped alumina filler. © 2017, © The Author(s) 2017.",
publisher = "SAGE",
journal = "Journal of Thermoplastic Composite Materials",
title = "Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix",
pages = "689-708",
volume = "31",
number = "5",
doi = "10.1177/0892705717718240",
url = "https://hdl.handle.net/21.15107/rcub_dais_4566"
}
Zec, J., Tomić, N., Zrilić, M., Marković, S., Stojanović, D. R.,& Jančić Heinemann, R.. (2018). Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix. in Journal of Thermoplastic Composite Materials
SAGE., 31(5), 689-708.
https://doi.org/10.1177/0892705717718240
https://hdl.handle.net/21.15107/rcub_dais_4566
Zec J, Tomić N, Zrilić M, Marković S, Stojanović DR, Jančić Heinemann R. Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix. in Journal of Thermoplastic Composite Materials. 2018;31(5):689-708.
doi:10.1177/0892705717718240
https://hdl.handle.net/21.15107/rcub_dais_4566 .
Zec, Jelena, Tomić, Nataša, Zrilić, Milorad, Marković, Smilja, Stojanović, Dušica R., Jančić Heinemann, Radmila, "Processing and characterization of UHMWPE composite fibres with alumina particles in poly(ethylene-vinyl acetate) matrix" in Journal of Thermoplastic Composite Materials, 31, no. 5 (2018):689-708,
https://doi.org/10.1177/0892705717718240 .,
https://hdl.handle.net/21.15107/rcub_dais_4566 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB