DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag

Authorized Users Only
2019
Authors
Nikolić, Irena
Marković, Smilja
Veselinović, Ljiljana
Radmilović, Vuk V.
Janković Častvan, Ivona
Radmilović, Velimir R.
Article (Published version)
Metadata
Show full item record
Abstract
Pristine electric arc furnace slag (EAFS) as well as EAFS modified by alkali activation i.e. alkali activated slag (AAS) have found a novel application as adsorbents used in Cu2+ removal from sulfate solutions. The adsorption tests were carried in batch conditions and results have shown that alkali activation of EAFS enhances the Cu2+ adsorption. The adsorption process was found to follow a pseudo second-order kinetic model and occurs via formation of posnjakite (Cu4(SO4)(OH)6·H2O) on the surface of both, EAFS and AAS. Enhanced adsorption properties of AAS, compared to EAFS, are attributed to a more porous structure, larger specific surface area and an increased number of surface groups involved in the binding of Cu2+.
Keywords:
adsorption / alkali activation / copper / FTIR / porous materials / steel slag
Source:
Materials Letters, 2019, 235, 184-188
Publisher:
  • Elsevier
Funding / projects:
  • Ministry of Science of Montenegro, Project no. 01-2383/2
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • Serbian Academy of Sciences and Arts, Project F-141

DOI: 10.1016/j.matlet.2018.10.027

ISSN: 0167-577X

WoS: 000448000700046

Scopus: 2-s2.0-85054444108
[ Google Scholar ]
2
1
Handle
https://hdl.handle.net/21.15107/rcub_dais_4551
URI
http://www.sciencedirect.com/science/article/pii/S0167577X18315908
https://dais.sanu.ac.rs/123456789/4551
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Nikolić, Irena
AU  - Marković, Smilja
AU  - Veselinović, Ljiljana
AU  - Radmilović, Vuk V.
AU  - Janković Častvan, Ivona
AU  - Radmilović, Velimir R.
PY  - 2019
UR  - http://www.sciencedirect.com/science/article/pii/S0167577X18315908
UR  - https://dais.sanu.ac.rs/123456789/4551
AB  - Pristine electric arc furnace slag (EAFS) as well as EAFS modified by alkali activation i.e. alkali activated slag (AAS) have found a novel application as adsorbents used in Cu2+ removal from sulfate solutions. The adsorption tests were carried in batch conditions and results have shown that alkali activation of EAFS enhances the Cu2+ adsorption. The adsorption process was found to follow a pseudo second-order kinetic model and occurs via formation of posnjakite (Cu4(SO4)(OH)6·H2O) on the surface of both, EAFS and AAS. Enhanced adsorption properties of AAS, compared to EAFS, are attributed to a more porous structure, larger specific surface area and an increased number of surface groups involved in the binding of Cu2+.
PB  - Elsevier
T2  - Materials Letters
T1  - Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag
SP  - 184
EP  - 188
VL  - 235
DO  - 10.1016/j.matlet.2018.10.027
UR  - https://hdl.handle.net/21.15107/rcub_dais_4551
ER  - 
@article{
author = "Nikolić, Irena and Marković, Smilja and Veselinović, Ljiljana and Radmilović, Vuk V. and Janković Častvan, Ivona and Radmilović, Velimir R.",
year = "2019",
abstract = "Pristine electric arc furnace slag (EAFS) as well as EAFS modified by alkali activation i.e. alkali activated slag (AAS) have found a novel application as adsorbents used in Cu2+ removal from sulfate solutions. The adsorption tests were carried in batch conditions and results have shown that alkali activation of EAFS enhances the Cu2+ adsorption. The adsorption process was found to follow a pseudo second-order kinetic model and occurs via formation of posnjakite (Cu4(SO4)(OH)6·H2O) on the surface of both, EAFS and AAS. Enhanced adsorption properties of AAS, compared to EAFS, are attributed to a more porous structure, larger specific surface area and an increased number of surface groups involved in the binding of Cu2+.",
publisher = "Elsevier",
journal = "Materials Letters",
title = "Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag",
pages = "184-188",
volume = "235",
doi = "10.1016/j.matlet.2018.10.027",
url = "https://hdl.handle.net/21.15107/rcub_dais_4551"
}
Nikolić, I., Marković, S., Veselinović, L., Radmilović, V. V., Janković Častvan, I.,& Radmilović, V. R.. (2019). Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag. in Materials Letters
Elsevier., 235, 184-188.
https://doi.org/10.1016/j.matlet.2018.10.027
https://hdl.handle.net/21.15107/rcub_dais_4551
Nikolić I, Marković S, Veselinović L, Radmilović VV, Janković Častvan I, Radmilović VR. Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag. in Materials Letters. 2019;235:184-188.
doi:10.1016/j.matlet.2018.10.027
https://hdl.handle.net/21.15107/rcub_dais_4551 .
Nikolić, Irena, Marković, Smilja, Veselinović, Ljiljana, Radmilović, Vuk V., Janković Častvan, Ivona, Radmilović, Velimir R., "Enhanced sorption of Cu2+ from sulfate solutions onto modified electric arc furnace slag" in Materials Letters, 235 (2019):184-188,
https://doi.org/10.1016/j.matlet.2018.10.027 .,
https://hdl.handle.net/21.15107/rcub_dais_4551 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB