Digitalni arhiv izdanja SANU
    • English
    • Српски
    • Српски (Serbia)
  • Srpski (latinica) 
    • Engleski
    • Srpski (ćirilica)
    • Srpski (latinica)
  • Prijava
Pregled rada 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Pregled rada
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • Pregled rada
JavaScript is disabled for your browser. Some features of this site may not work without it.

Continuous biodiesel production under subcritical condition of methanol – Design of pilot plant and packed bed reactor with MnCO3/Na-silicate catalyst

Thumbnail
2018
j.enconman.2018.05.028.pdf (1.857Mb)
Autori
Liu, Hui
Lukić, Ivana
Miladinović, Marija R.
Veljković, Vlada B.
Zdujić, Miodrag
Zhu, Xiaosun
Zhang, Yanan
Skala, Dejan
Članak u časopisu (Recenzirana verzija)
Metapodaci
Prikaz svih podataka o dokumentu
Apstrakt
The continuous biodiesel production from soybean oil was carried out under the subcritical condition of methanol with MnCO3/Na-silicate as a heterogeneous catalyst. The transesterification rate was first investigated in a set of experiments performed in a batch autoclave at 448 K using methanol-to-oil molar ratio of 18:1 and various catalyst loadings (5, 10 and 20 wt% based on the oil mass). The results from these experiments, as well as the experimental data and the appropriate kinetic model recently reported in the literature were used for designing a packed bed tubular reactor (PBTR), a main unit of the pilot plant with the capacity of 100 L of biodiesel per day. The pilot plant was constructed and tested under various operating conditions. The first 11 h of the pilot-plant operation was realized in the tubular reactor packed with inert glass beads (i.e. without the catalyst) in order to analyze the effect of the non-catalyzed subcritical biodiesel (fatty acid methyl esters, FAME) p...roduction. Then, glass beads were replaced with a mix of MnCO3/Na-silicate catalyst particles and glass beads, and the catalytic biodiesel production was continuously run under the subcritical methanol condition for 85 h. Two mass balance tests during the continuous pilot plant operation were performed. © 2018 Elsevier Ltd

Ključne reči:
biodiesel / kinetic modeling / MnCO3/Na-silicate catalyst / pilot-plant design / subcritical methanolysis
Izvor:
Energy Conversion and Management, 2018, 168, 494-504
Izdavač:
  • Elsevier
Projekti:
  • Nanostrukturni funkcionalni i kompozitni materijali u katalitičkim i sorpcionim procesima (RS-45001)
  • International S&T Cooperation Program of China - Grant No. 2013DFG92250

DOI: 10.1016/j.enconman.2018.05.028

ISSN: 0196-8904

WoS: 000435619500040

Scopus: 2-s2.0-85047264849
[ Google Scholar ]
2
2
URI
http://dais.sanu.ac.rs/123456789/4513
Kolekcije
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institucija
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Liu, Hui
AU  - Lukić, Ivana
AU  - Miladinović, Marija R.
AU  - Veljković, Vlada B.
AU  - Zdujić, Miodrag
AU  - Zhu, Xiaosun
AU  - Zhang, Yanan
AU  - Skala, Dejan
PY  - 2018
UR  - http://dais.sanu.ac.rs/123456789/4513
AB  - The continuous biodiesel production from soybean oil was carried out under the subcritical condition of methanol with MnCO3/Na-silicate as a heterogeneous catalyst. The transesterification rate was first investigated in a set of experiments performed in a batch autoclave at 448 K using methanol-to-oil molar ratio of 18:1 and various catalyst loadings (5, 10 and 20 wt% based on the oil mass). The results from these experiments, as well as the experimental data and the appropriate kinetic model recently reported in the literature were used for designing a packed bed tubular reactor (PBTR), a main unit of the pilot plant with the capacity of 100 L of biodiesel per day. The pilot plant was constructed and tested under various operating conditions. The first 11 h of the pilot-plant operation was realized in the tubular reactor packed with inert glass beads (i.e. without the catalyst) in order to analyze the effect of the non-catalyzed subcritical biodiesel (fatty acid methyl esters, FAME) production. Then, glass beads were replaced with a mix of MnCO3/Na-silicate catalyst particles and glass beads, and the catalytic biodiesel production was continuously run under the subcritical methanol condition for 85 h. Two mass balance tests during the continuous pilot plant operation were performed. © 2018 Elsevier Ltd
PB  - Elsevier
T2  - Energy Conversion and Management
T1  - Continuous biodiesel production under subcritical condition of methanol – Design of pilot plant and packed bed reactor with MnCO3/Na-silicate catalyst
SP  - 494
EP  - 504
VL  - 168
DO  - 10.1016/j.enconman.2018.05.028
ER  - 
@article{
author = "Liu, Hui and Lukić, Ivana and Miladinović, Marija R. and Veljković, Vlada B. and Zdujić, Miodrag and Zhu, Xiaosun and Zhang, Yanan and Skala, Dejan",
year = "2018",
url = "http://dais.sanu.ac.rs/123456789/4513",
abstract = "The continuous biodiesel production from soybean oil was carried out under the subcritical condition of methanol with MnCO3/Na-silicate as a heterogeneous catalyst. The transesterification rate was first investigated in a set of experiments performed in a batch autoclave at 448 K using methanol-to-oil molar ratio of 18:1 and various catalyst loadings (5, 10 and 20 wt% based on the oil mass). The results from these experiments, as well as the experimental data and the appropriate kinetic model recently reported in the literature were used for designing a packed bed tubular reactor (PBTR), a main unit of the pilot plant with the capacity of 100 L of biodiesel per day. The pilot plant was constructed and tested under various operating conditions. The first 11 h of the pilot-plant operation was realized in the tubular reactor packed with inert glass beads (i.e. without the catalyst) in order to analyze the effect of the non-catalyzed subcritical biodiesel (fatty acid methyl esters, FAME) production. Then, glass beads were replaced with a mix of MnCO3/Na-silicate catalyst particles and glass beads, and the catalytic biodiesel production was continuously run under the subcritical methanol condition for 85 h. Two mass balance tests during the continuous pilot plant operation were performed. © 2018 Elsevier Ltd",
publisher = "Elsevier",
journal = "Energy Conversion and Management",
title = "Continuous biodiesel production under subcritical condition of methanol – Design of pilot plant and packed bed reactor with MnCO3/Na-silicate catalyst",
pages = "494-504",
volume = "168",
doi = "10.1016/j.enconman.2018.05.028"
}
Liu H, Lukić I, Miladinović MR, Veljković VB, Zdujić M, Zhu X, Zhang Y, Skala D. Continuous biodiesel production under subcritical condition of methanol – Design of pilot plant and packed bed reactor with MnCO3/Na-silicate catalyst. Energy Conversion and Management. 2018;168:494-504
Liu, H., Lukić, I., Miladinović, M. R., Veljković, V. B., Zdujić, M., Zhu, X., Zhang, Y.,& Skala, D. (2018). Continuous biodiesel production under subcritical condition of methanol – Design of pilot plant and packed bed reactor with MnCO3/Na-silicate catalyst.
Energy Conversion and ManagementElsevier., 168, 494-504.
https://doi.org/10.1016/j.enconman.2018.05.028
Liu Hui, Lukić Ivana, Miladinović Marija R., Veljković Vlada B., Zdujić Miodrag, Zhu Xiaosun, Zhang Yanan, Skala Dejan, "Continuous biodiesel production under subcritical condition of methanol – Design of pilot plant and packed bed reactor with MnCO3/Na-silicate catalyst" 168 (2018):494-504,
https://doi.org/10.1016/j.enconman.2018.05.028 .

DSpace software copyright © 2002-2015  DuraSpace
O Digitalnom arhivu izdanja SANU (DAIS) | Pošaljite zapažanja

re3dataOpenAIRERCUB
 

 

Kompletan repozitorijumInstitucijeAutoriNasloviTemeOva institucijaAutoriNasloviTeme

Statistika

Pregled statistika

DSpace software copyright © 2002-2015  DuraSpace
O Digitalnom arhivu izdanja SANU (DAIS) | Pošaljite zapažanja

re3dataOpenAIRERCUB