DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting

Thumbnail
2013
425.pdf (97.32Kb)
Authors
Pavlović, Vladimir B.
Peleš, Adriana
Pavlović, Vera P.
Đoković, Vladimir
Dojčilović, Radovan
Dukić, M.
Vlahović, Branislav
Conference object (Published version)
Metadata
Show full item record
Abstract
Vibration-based mechanical energy is one of the most accessible energy source in the surroundings. Harvesting this type of energy exhibits a great potential for remote/wireless sensing, charging batteries, and powering electronic devices. Piezoelectric and ferroelectric materials, including PZT, BaTiO3, ZnO, polyvinylidene fluoride (PVDF), etc., can be used for converting ambient mechanical energy into electricity. Based on these materials, a variety of micro- or nanoelectromechanical systems can be developed for harvesting energies from random vibrations, mechanical waves, or body movements like walking, running, or typing. Recent investigations on nanocomposites of electroactive ceramics and ferroelectric polymers exploit this approach in order to produce new multifunctional materials for mechanical energy harvesting. Taking into account that mechanical activation is one of the methods for modification of physico-chemical properties of the filler, in this study we investigate the inf...luence of mechanical activation of ZnO particles on structural properties of ZnO/polyvinylidene fluoride nanocomposites. The nanocomposite films were prepared by solution casting method and investigated by X-ray diffraction (XRD) method and Raman spectroscopy, while the microstructure morphology has been analyzed by scanning electron microscope (SEM). Presented results will enable optimization of PVDF processing techniques for the production of new mechanical energy harvesting devices.

Keywords:
polymer and ceramic nanostructures / mechanical energy harvesting / piezoelectric materials / ferroelectric materials
Source:
Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade, 2013, 48-48
Publisher:
  • Belgrade : Serbian Ceramic Society
Funding / projects:
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)

ISBN: 9788691562717

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_428
URI
https://dais.sanu.ac.rs/123456789/428
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Pavlović, Vladimir B.
AU  - Peleš, Adriana
AU  - Pavlović, Vera P.
AU  - Đoković, Vladimir
AU  - Dojčilović, Radovan
AU  - Dukić, M.
AU  - Vlahović, Branislav
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/428
AB  - Vibration-based mechanical energy is one of the most accessible energy source in the surroundings. Harvesting this type of energy exhibits a great potential for remote/wireless sensing, charging batteries, and powering electronic devices. Piezoelectric and ferroelectric materials, including PZT, BaTiO3, ZnO, polyvinylidene fluoride (PVDF), etc., can be used for converting ambient mechanical energy into electricity. Based on these materials, a variety of micro- or nanoelectromechanical systems can be developed for harvesting energies from random vibrations, mechanical waves, or body movements like walking, running, or typing. Recent investigations on nanocomposites of electroactive ceramics and ferroelectric polymers exploit this approach in order to produce new multifunctional materials for mechanical energy harvesting. Taking into account that mechanical activation is one of the methods for modification of physico-chemical properties of the filler, in this study we investigate the influence of mechanical activation of ZnO particles on structural properties of ZnO/polyvinylidene fluoride nanocomposites. The nanocomposite films were prepared by solution casting method and investigated by X-ray diffraction (XRD) method and Raman spectroscopy, while the microstructure morphology has been analyzed by scanning electron microscope (SEM). Presented results will enable optimization of PVDF processing techniques for the production of new mechanical energy harvesting devices.
PB  - Belgrade : Serbian Ceramic Society
C3  - Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
T1  - Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting
SP  - 48
EP  - 48
UR  - https://hdl.handle.net/21.15107/rcub_dais_428
ER  - 
@conference{
author = "Pavlović, Vladimir B. and Peleš, Adriana and Pavlović, Vera P. and Đoković, Vladimir and Dojčilović, Radovan and Dukić, M. and Vlahović, Branislav",
year = "2013",
abstract = "Vibration-based mechanical energy is one of the most accessible energy source in the surroundings. Harvesting this type of energy exhibits a great potential for remote/wireless sensing, charging batteries, and powering electronic devices. Piezoelectric and ferroelectric materials, including PZT, BaTiO3, ZnO, polyvinylidene fluoride (PVDF), etc., can be used for converting ambient mechanical energy into electricity. Based on these materials, a variety of micro- or nanoelectromechanical systems can be developed for harvesting energies from random vibrations, mechanical waves, or body movements like walking, running, or typing. Recent investigations on nanocomposites of electroactive ceramics and ferroelectric polymers exploit this approach in order to produce new multifunctional materials for mechanical energy harvesting. Taking into account that mechanical activation is one of the methods for modification of physico-chemical properties of the filler, in this study we investigate the influence of mechanical activation of ZnO particles on structural properties of ZnO/polyvinylidene fluoride nanocomposites. The nanocomposite films were prepared by solution casting method and investigated by X-ray diffraction (XRD) method and Raman spectroscopy, while the microstructure morphology has been analyzed by scanning electron microscope (SEM). Presented results will enable optimization of PVDF processing techniques for the production of new mechanical energy harvesting devices.",
publisher = "Belgrade : Serbian Ceramic Society",
journal = "Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade",
title = "Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting",
pages = "48-48",
url = "https://hdl.handle.net/21.15107/rcub_dais_428"
}
Pavlović, V. B., Peleš, A., Pavlović, V. P., Đoković, V., Dojčilović, R., Dukić, M.,& Vlahović, B.. (2013). Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade
Belgrade : Serbian Ceramic Society., 48-48.
https://hdl.handle.net/21.15107/rcub_dais_428
Pavlović VB, Peleš A, Pavlović VP, Đoković V, Dojčilović R, Dukić M, Vlahović B. Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting. in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade. 2013;:48-48.
https://hdl.handle.net/21.15107/rcub_dais_428 .
Pavlović, Vladimir B., Peleš, Adriana, Pavlović, Vera P., Đoković, Vladimir, Dojčilović, Radovan, Dukić, M., Vlahović, Branislav, "Piezoelectric polymer/ceramic nanostructures for mechanical energy harvesting" in Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts : II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade (2013):48-48,
https://hdl.handle.net/21.15107/rcub_dais_428 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB