DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells

Authorized Users Only
2018
Authors
Dojčilović, Radovan
Pajović, Jelena D.
Božanić, Dušan K.
Jović, Nataša
Pavlović, Vera P.
Pavlović, Vladimir B.
Acković, Lea Lenhardt
Zeković, Ivana
Dramićanin, Miroslav
Kaščaková, Slavka
Réfrégiers, Matthieu
Rašić, Goran
Vlahović, Branislav
Đoković, Vladimir
Article (Published version)
Metadata
Show full item record
Abstract
The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO ...and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.

Keywords:
bioimaging / cancer / cells / fluorescence / graphene oxide
Source:
2D Materials, 2018, 5, 045019-
Publisher:
  • IOP Publishing
Funding / projects:
  • Size-, shape- and structure- dependent properties of nanoparticles and nanocomposites (RS-172056)
  • Materials of Reduced Dimensions for Efficient Light Harvesting and Energy conversion (RS-45020)
  • Investigation of the effect of parameters of synthesis and processing on dielectric, optical and magnetic properties, both bulk and surface of crystal and polymeric systems (RS-171029)
  • United States National Science Foundation (NSF) / Centers of Research Excellence in Science and Technology (CREST), Grant HRD-0833184
  • United States National Aeronautics and Space Administration (NASA), Grant NNX09AV07A

DOI: 10.1088/2053-1583/aad72b

ISSN: 2053-1583

WoS: 000441754800003

Scopus: 2-s2.0-85054724220
[ Google Scholar ]
2
Handle
https://hdl.handle.net/21.15107/rcub_dais_4081
URI
https://dais.sanu.ac.rs/123456789/4081
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Dojčilović, Radovan
AU  - Pajović, Jelena D.
AU  - Božanić, Dušan K.
AU  - Jović, Nataša
AU  - Pavlović, Vera P.
AU  - Pavlović, Vladimir B.
AU  - Acković, Lea Lenhardt
AU  - Zeković, Ivana
AU  - Dramićanin, Miroslav
AU  - Kaščaková, Slavka
AU  - Réfrégiers, Matthieu
AU  - Rašić, Goran
AU  - Vlahović, Branislav
AU  - Đoković, Vladimir
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4081
AB  - The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.
PB  - IOP Publishing
T2  - 2D Materials
T1  - DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells
SP  - 045019
VL  - 5
DO  - 10.1088/2053-1583/aad72b
UR  - https://hdl.handle.net/21.15107/rcub_dais_4081
ER  - 
@article{
author = "Dojčilović, Radovan and Pajović, Jelena D. and Božanić, Dušan K. and Jović, Nataša and Pavlović, Vera P. and Pavlović, Vladimir B. and Acković, Lea Lenhardt and Zeković, Ivana and Dramićanin, Miroslav and Kaščaková, Slavka and Réfrégiers, Matthieu and Rašić, Goran and Vlahović, Branislav and Đoković, Vladimir",
year = "2018",
abstract = "The interaction of partially reduced graphene oxide (prGO) and Huh7.5.1 liver cancer cells was investigated by means of DUV fluorescence bioimaging. The prGO sample was obtained by the reduction (to a certain extent) of the initially prepared graphene oxide (GO) nanosheets with hydrazine. The fluorescence of the GO nanosheets increases with time of the reduction due to a change in ratio of the sp2 and sp3 carbon sites and the prGO sample was extracted from the dispersion after 6 min, when the intensity of the fluorescence reached its maximum. The reduction process was left to proceed further to saturation until highly reduced graphene oxide (denoted here as rGO) was obtained. GO, prGO and rGO samples were investigated by structural (scanning electron microscopy (SEM), scanning transmission electron microscopy coupled with energy dispersive spectrometry (STEM-EDS)) and spectroscopic (UV-vis, photoluminescence (PL), Raman) methods. After that, Huh7.5.1 cells were incubated with GO, prGO and rGO nanosheets and used in bioimaging studies, which were performed on DISCO beamline of synchrotron SOLEIL. It was found that the prGO significantly enhanced the fluorescence of the cells and increased the intensity of the signal by ~2.5 times. Time-lapse fluorescence microscopy experiments showed that fluorescence dynamics strongly depends on the type of nanosheets used. The obtained prGO nanostructure can be easily conjugated with aromatic ring containing drugs, which opens a possibility for its applications in fluorescence microscopy monitored drug delivery. © 2018 IOP Publishing Ltd.",
publisher = "IOP Publishing",
journal = "2D Materials",
title = "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells",
pages = "045019",
volume = "5",
doi = "10.1088/2053-1583/aad72b",
url = "https://hdl.handle.net/21.15107/rcub_dais_4081"
}
Dojčilović, R., Pajović, J. D., Božanić, D. K., Jović, N., Pavlović, V. P., Pavlović, V. B., Acković, L. L., Zeković, I., Dramićanin, M., Kaščaková, S., Réfrégiers, M., Rašić, G., Vlahović, B.,& Đoković, V.. (2018). DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials
IOP Publishing., 5, 045019.
https://doi.org/10.1088/2053-1583/aad72b
https://hdl.handle.net/21.15107/rcub_dais_4081
Dojčilović R, Pajović JD, Božanić DK, Jović N, Pavlović VP, Pavlović VB, Acković LL, Zeković I, Dramićanin M, Kaščaková S, Réfrégiers M, Rašić G, Vlahović B, Đoković V. DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells. in 2D Materials. 2018;5:045019.
doi:10.1088/2053-1583/aad72b
https://hdl.handle.net/21.15107/rcub_dais_4081 .
Dojčilović, Radovan, Pajović, Jelena D., Božanić, Dušan K., Jović, Nataša, Pavlović, Vera P., Pavlović, Vladimir B., Acković, Lea Lenhardt, Zeković, Ivana, Dramićanin, Miroslav, Kaščaková, Slavka, Réfrégiers, Matthieu, Rašić, Goran, Vlahović, Branislav, Đoković, Vladimir, "DUV fluorescence bioimaging study of the interaction of partially reduced graphene oxide and liver cancer cells" in 2D Materials, 5 (2018):045019,
https://doi.org/10.1088/2053-1583/aad72b .,
https://hdl.handle.net/21.15107/rcub_dais_4081 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB