DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction

Authorized Users Only
2018
Authors
Lović, J. D.
Elezović, Nevenka
Jović, Borka
Zabinski, Piotr
Gajić-Krstajić, Ljiljana
Jović, Vladimir
Article (Published version)
Metadata
Show full item record
Abstract
The Pd and three AgPd alloy layers (AgPd1, AgPd2 and AgPd3) were electrodeposited onto Au disc electrodes from the solution containing high concentration of chloride ions (>12 M). All coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), anodic linear sweep voltammetry (ALSV), while their surface composition was investigated by X-ray photoelectron spectroscopy (XPS). The AgPd1 and AgPd2 samples were electrodeposited at different constant current densities (−0.178 mA cm−2 and -0.415 mA cm−2 respectively) to the charge of −0.2 C cm−2 (thickness ∼ 0.18 μm) at a stationary disc electrode, while the sample AgPd3 was electrodeposited to the charge of −3.0 C cm−2 (thickness ∼ 2.8 μm) at a constant current density of −7.0 mA cm−2 under the conditions of convective diffusion. Samples AgPd1 and AgPd2 had similar morphologies of low roughness, while the morphology of AgPd3 was characterized by large crystals and higher roughness. The most... active and the most poisoning tolerant coatings for ethanol oxidation reaction (EOR) are the AgPd3 and AgPd1 alloy samples, containing 72.6 at.% Ag – 27.4 at.% Pd and 84.7 at.% Ag – 15.2 at.% Pd respectively (XPS analysis). In this study, we demonstrated for the first time that the activity for the EOR at AgPd alloys was closely related to the amount of non-reduced Ag2O (most probably as Ag – hydroxide). Accordingly, all AgPd alloy samples had to be cycled in the potential region of Ag2O formation and reduction before the investigation of the EOR, in order to provide their catalytic activity towards the EOR. © 2018 Hydrogen Energy Publications LLC

Keywords:
AgPd coatings / electrodeposition / ethanol oxidation / non-reduced Ag2O
Source:
International Journal of Hydrogen Energy, 2018, 43, 39, 18498-18508
Publisher:
  • Elsevier
Funding / projects:
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • New approach in designing materials for energy conversion and energy storage systems (RS-172060)
  • COST Action MP1407 - Electrochemical processing methodologies and corrosion protection for device and systems miniaturization (e-MINDS)
Note:
  • Supporting information: https://hdl.handle.net/21.15107/rcub_dais_4082
Related info:
  • Referenced by
    https://hdl.handle.net/21.15107/rcub_dais_4082

DOI: 10.1016/j.ijhydene.2018.08.056

ISSN: 0360-3199

WoS: 000446949400043

Scopus: 2-s2.0-85052806947
[ Google Scholar ]
9
8
Handle
https://hdl.handle.net/21.15107/rcub_dais_4076
URI
https://dais.sanu.ac.rs/123456789/4076
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Lović, J. D.
AU  - Elezović, Nevenka
AU  - Jović, Borka
AU  - Zabinski, Piotr
AU  - Gajić-Krstajić, Ljiljana
AU  - Jović, Vladimir
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/4076
AB  - The Pd and three AgPd alloy layers (AgPd1, AgPd2 and AgPd3) were electrodeposited onto Au disc electrodes from the solution containing high concentration of chloride ions (>12 M). All coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), anodic linear sweep voltammetry (ALSV), while their surface composition was investigated by X-ray photoelectron spectroscopy (XPS). The AgPd1 and AgPd2 samples were electrodeposited at different constant current densities (−0.178 mA cm−2 and -0.415 mA cm−2 respectively) to the charge of −0.2 C cm−2 (thickness ∼ 0.18 μm) at a stationary disc electrode, while the sample AgPd3 was electrodeposited to the charge of −3.0 C cm−2 (thickness ∼ 2.8 μm) at a constant current density of −7.0 mA cm−2 under the conditions of convective diffusion. Samples AgPd1 and AgPd2 had similar morphologies of low roughness, while the morphology of AgPd3 was characterized by large crystals and higher roughness. The most active and the most poisoning tolerant coatings for ethanol oxidation reaction (EOR) are the AgPd3 and AgPd1 alloy samples, containing 72.6 at.% Ag – 27.4 at.% Pd and 84.7 at.% Ag – 15.2 at.% Pd respectively (XPS analysis). In this study, we demonstrated for the first time that the activity for the EOR at AgPd alloys was closely related to the amount of non-reduced Ag2O (most probably as Ag – hydroxide). Accordingly, all AgPd alloy samples had to be cycled in the potential region of Ag2O formation and reduction before the investigation of the EOR, in order to provide their catalytic activity towards the EOR. © 2018 Hydrogen Energy Publications LLC
PB  - Elsevier
T2  - International Journal of Hydrogen Energy
T1  - Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction
SP  - 18498
EP  - 18508
VL  - 43
IS  - 39
DO  - 10.1016/j.ijhydene.2018.08.056
UR  - https://hdl.handle.net/21.15107/rcub_dais_4076
ER  - 
@article{
author = "Lović, J. D. and Elezović, Nevenka and Jović, Borka and Zabinski, Piotr and Gajić-Krstajić, Ljiljana and Jović, Vladimir",
year = "2018",
abstract = "The Pd and three AgPd alloy layers (AgPd1, AgPd2 and AgPd3) were electrodeposited onto Au disc electrodes from the solution containing high concentration of chloride ions (>12 M). All coatings were investigated by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), anodic linear sweep voltammetry (ALSV), while their surface composition was investigated by X-ray photoelectron spectroscopy (XPS). The AgPd1 and AgPd2 samples were electrodeposited at different constant current densities (−0.178 mA cm−2 and -0.415 mA cm−2 respectively) to the charge of −0.2 C cm−2 (thickness ∼ 0.18 μm) at a stationary disc electrode, while the sample AgPd3 was electrodeposited to the charge of −3.0 C cm−2 (thickness ∼ 2.8 μm) at a constant current density of −7.0 mA cm−2 under the conditions of convective diffusion. Samples AgPd1 and AgPd2 had similar morphologies of low roughness, while the morphology of AgPd3 was characterized by large crystals and higher roughness. The most active and the most poisoning tolerant coatings for ethanol oxidation reaction (EOR) are the AgPd3 and AgPd1 alloy samples, containing 72.6 at.% Ag – 27.4 at.% Pd and 84.7 at.% Ag – 15.2 at.% Pd respectively (XPS analysis). In this study, we demonstrated for the first time that the activity for the EOR at AgPd alloys was closely related to the amount of non-reduced Ag2O (most probably as Ag – hydroxide). Accordingly, all AgPd alloy samples had to be cycled in the potential region of Ag2O formation and reduction before the investigation of the EOR, in order to provide their catalytic activity towards the EOR. © 2018 Hydrogen Energy Publications LLC",
publisher = "Elsevier",
journal = "International Journal of Hydrogen Energy",
title = "Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction",
pages = "18498-18508",
volume = "43",
number = "39",
doi = "10.1016/j.ijhydene.2018.08.056",
url = "https://hdl.handle.net/21.15107/rcub_dais_4076"
}
Lović, J. D., Elezović, N., Jović, B., Zabinski, P., Gajić-Krstajić, L.,& Jović, V.. (2018). Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction. in International Journal of Hydrogen Energy
Elsevier., 43(39), 18498-18508.
https://doi.org/10.1016/j.ijhydene.2018.08.056
https://hdl.handle.net/21.15107/rcub_dais_4076
Lović JD, Elezović N, Jović B, Zabinski P, Gajić-Krstajić L, Jović V. Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction. in International Journal of Hydrogen Energy. 2018;43(39):18498-18508.
doi:10.1016/j.ijhydene.2018.08.056
https://hdl.handle.net/21.15107/rcub_dais_4076 .
Lović, J. D., Elezović, Nevenka, Jović, Borka, Zabinski, Piotr, Gajić-Krstajić, Ljiljana, Jović, Vladimir, "Electrodeposited AgPd alloy coatings as efficient catalysts for the ethanol oxidation reaction" in International Journal of Hydrogen Energy, 43, no. 39 (2018):18498-18508,
https://doi.org/10.1016/j.ijhydene.2018.08.056 .,
https://hdl.handle.net/21.15107/rcub_dais_4076 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB