DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Geopolymer materials based on the electric arc furnace slag

Thumbnail
2013
398.pdf (43.56Kb)
Authors
Nikolić, Irena
Janković Častvan, Ivona
Radmilović, Vuk V.
Karanović, Ljiljana
Marković, Smilja
Mentus, Slavko
Radmilović, Velimir R.
Conference object (Published version)
Metadata
Show full item record
Abstract
The remelting of iron and steel scrap in the electric arc furnaces generates the non-hazardous waste – electric arc furnace slag (EAFS), which can be disposed of to appropriate landfills. Currently, this slag found its application in conventional concrete production to improve its mechanical, chemical and physical properties, as an additive to asphalt base mixture and in cement production. In this study we have investigated the effect of alkaline dosage on the strength and thermal resistance of EAFS based geopolymers. The results have shown that these materials are mainly amorphous with some crystal phases remained from the undisolved EAFS such as larnite, gehlenite, wuestite, monticellite, calcite. Compressive strength of these materials is strongly influenced by the alkaline dosage. An increase of NaOH concentration in the interval of 7-10 M leads to the increase of geopolymer’s strength. The maximal compressive strength of EAFS based geopolymer was obtained using the 10 M NaOH. Furt...her increase of alkaline dosage to the value of 13 M NaOH results in the slight decrease of the geopolymer strength. Additionally, depending on the synthesis parameters, EAFS based geopolymers exhibit improved durability in high temperature environments in comparison with conventional cement based materials. All investigated samples exhibit a shrinkage which is attributed to the change of porosity. The mass loss due to the loss of water was also observed. This research was supported by a Ministry of Science of Montenegro under the contract No 01-460.

Keywords:
geopolymers / electric arc furnace slag / concrete production
Source:
The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts, 2013, 47-47
Publisher:
  • Belgrade : Materials Research Society of Serbia
Funding / projects:
  • Ministry of Science of Montenegro, Project no. 01-460
  • Development, characterization and application nanostructured and composite electrocatalysts and interactive supports for fuel cells and water electrolysis (RS-172054)
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)
[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_401
URI
https://dais.sanu.ac.rs/123456789/401
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Nikolić, Irena
AU  - Janković Častvan, Ivona
AU  - Radmilović, Vuk V.
AU  - Karanović, Ljiljana
AU  - Marković, Smilja
AU  - Mentus, Slavko
AU  - Radmilović, Velimir R.
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/401
AB  - The remelting of iron and steel scrap in the electric arc furnaces generates the non-hazardous waste – electric arc furnace slag (EAFS), which can be disposed of to appropriate landfills. Currently, this slag found its application in conventional concrete production to improve its mechanical, chemical and physical properties, as an additive to asphalt base mixture and in cement production. In this study we have investigated the effect of alkaline dosage on the strength and thermal resistance of EAFS based geopolymers. The results have shown that these materials are mainly amorphous with some crystal phases remained from the undisolved EAFS such as larnite, gehlenite, wuestite, monticellite, calcite. Compressive strength of these materials is strongly influenced by the alkaline dosage. An increase of NaOH concentration in the interval of 7-10 M leads to the increase of geopolymer’s strength. The maximal compressive strength of EAFS based geopolymer was obtained using the 10 M NaOH. Further increase of alkaline dosage to the value of 13 M NaOH results in the slight decrease of the geopolymer strength. Additionally, depending on the synthesis parameters, EAFS based geopolymers exhibit improved durability in high temperature environments in comparison with conventional cement based materials. All investigated samples exhibit a shrinkage which is attributed to the change of porosity. The mass loss due to the loss of water was also observed. This research was supported by a Ministry of Science of Montenegro under the contract No 01-460.
PB  - Belgrade : Materials Research Society of Serbia
C3  - The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
T1  - Geopolymer materials based on the electric arc furnace slag
SP  - 47
EP  - 47
UR  - https://hdl.handle.net/21.15107/rcub_dais_401
ER  - 
@conference{
author = "Nikolić, Irena and Janković Častvan, Ivona and Radmilović, Vuk V. and Karanović, Ljiljana and Marković, Smilja and Mentus, Slavko and Radmilović, Velimir R.",
year = "2013",
abstract = "The remelting of iron and steel scrap in the electric arc furnaces generates the non-hazardous waste – electric arc furnace slag (EAFS), which can be disposed of to appropriate landfills. Currently, this slag found its application in conventional concrete production to improve its mechanical, chemical and physical properties, as an additive to asphalt base mixture and in cement production. In this study we have investigated the effect of alkaline dosage on the strength and thermal resistance of EAFS based geopolymers. The results have shown that these materials are mainly amorphous with some crystal phases remained from the undisolved EAFS such as larnite, gehlenite, wuestite, monticellite, calcite. Compressive strength of these materials is strongly influenced by the alkaline dosage. An increase of NaOH concentration in the interval of 7-10 M leads to the increase of geopolymer’s strength. The maximal compressive strength of EAFS based geopolymer was obtained using the 10 M NaOH. Further increase of alkaline dosage to the value of 13 M NaOH results in the slight decrease of the geopolymer strength. Additionally, depending on the synthesis parameters, EAFS based geopolymers exhibit improved durability in high temperature environments in comparison with conventional cement based materials. All investigated samples exhibit a shrinkage which is attributed to the change of porosity. The mass loss due to the loss of water was also observed. This research was supported by a Ministry of Science of Montenegro under the contract No 01-460.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts",
title = "Geopolymer materials based on the electric arc furnace slag",
pages = "47-47",
url = "https://hdl.handle.net/21.15107/rcub_dais_401"
}
Nikolić, I., Janković Častvan, I., Radmilović, V. V., Karanović, L., Marković, S., Mentus, S.,& Radmilović, V. R.. (2013). Geopolymer materials based on the electric arc furnace slag. in The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts
Belgrade : Materials Research Society of Serbia., 47-47.
https://hdl.handle.net/21.15107/rcub_dais_401
Nikolić I, Janković Častvan I, Radmilović VV, Karanović L, Marković S, Mentus S, Radmilović VR. Geopolymer materials based on the electric arc furnace slag. in The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts. 2013;:47-47.
https://hdl.handle.net/21.15107/rcub_dais_401 .
Nikolić, Irena, Janković Častvan, Ivona, Radmilović, Vuk V., Karanović, Ljiljana, Marković, Smilja, Mentus, Slavko, Radmilović, Velimir R., "Geopolymer materials based on the electric arc furnace slag" in The Fifteenth Annual Conference YUCOMAT 2013: Programme and the Book of Abstracts (2013):47-47,
https://hdl.handle.net/21.15107/rcub_dais_401 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB