DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition

Authorized Users Only
2013
Authors
Rafailović, Lidija D.
Gammer, Christoph
Ratenberger, Christian
Trišović, Tomislav
Kleber, Christoph
Karnthaler, Hans-Peter
Article (Published version)
Metadata
Show full item record
Abstract
Electrodeposition at high current densities provides excellent means for the production of deposits with a high surface area. Porous deposits attract great interest due to their wide range of possible applications in electrocatalysis. In addition, an advanced porous electrode should have both, micro and nanoscaled features. We report the synthesis of a multiscale open porous foam of NiCoFe and its excellent electrocatalytic performance. At a current density of 1 A cm−2 a 3D dendritic structure with open pores is obtained with pore walls having a morphology that consists of ‘cauliflower-like’ particles containing open multiscaled dendritic structures. Cyclic voltammograms of a smooth NiCoFe electrode are compared with those of the achieved nanodendritic NiCoFe foam electrode. The catalytic activity of the NiCoFe foam is strongly enhanced for both, the cathodic reduction of oxygen and the anodic evolution of oxygen and shows a good reversibility. Therefore the presented new material is p...romising as bifunctional catalyst in electrochemical energy conversion and storage devices.

Keywords:
nanostructured energy materials / ternary NiCoFe electrodes / bifunctional catalyst / transmission electron microscopy / nanodendritic foam structures
Source:
Nano Energy, 2013, 2, 4, 523-529
Publisher:
  • Elsevier
Projects:
  • University of Vienna, Austria, Project “Bulk NanostructuredMaterials”
  • Austrian Science Fund (FWF), S10403
  • Austrian Science Fund (FWF), P22440
  • Austrian Research Promotion Agency (FFG) and the Government of Lower Austria, COMET

DOI: 10.1016/j.nanoen.2012.12.004

ISSN: 2211-2855

WoS: 000322937000013

Scopus: 2-s2.0-84880798605
[ Google Scholar ]
18
18
URI
http://dais.sanu.ac.rs/123456789/376
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Rafailović, Lidija D.
AU  - Gammer, Christoph
AU  - Ratenberger, Christian
AU  - Trišović, Tomislav
AU  - Kleber, Christoph
AU  - Karnthaler, Hans-Peter
PY  - 2013
UR  - http://dais.sanu.ac.rs/123456789/376
AB  - Electrodeposition at high current densities provides excellent means for the production of deposits with a high surface area. Porous deposits attract great interest due to their wide range of possible applications in electrocatalysis. In addition, an advanced porous electrode should have both, micro and nanoscaled features. We report the synthesis of a multiscale open porous foam of NiCoFe and its excellent electrocatalytic performance. At a current density of 1 A cm−2 a 3D dendritic structure with open pores is obtained with pore walls having a morphology that consists of ‘cauliflower-like’ particles containing open multiscaled dendritic structures. Cyclic voltammograms of a smooth NiCoFe electrode are compared with those of the achieved nanodendritic NiCoFe foam electrode. The catalytic activity of the NiCoFe foam is strongly enhanced for both, the cathodic reduction of oxygen and the anodic evolution of oxygen and shows a good reversibility. Therefore the presented new material is promising as bifunctional catalyst in electrochemical energy conversion and storage devices.
PB  - Elsevier
T2  - Nano Energy
T1  - Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition
SP  - 523
EP  - 529
VL  - 2
IS  - 4
DO  - 10.1016/j.nanoen.2012.12.004
ER  - 
@article{
author = "Rafailović, Lidija D. and Gammer, Christoph and Ratenberger, Christian and Trišović, Tomislav and Kleber, Christoph and Karnthaler, Hans-Peter",
year = "2013",
url = "http://dais.sanu.ac.rs/123456789/376",
abstract = "Electrodeposition at high current densities provides excellent means for the production of deposits with a high surface area. Porous deposits attract great interest due to their wide range of possible applications in electrocatalysis. In addition, an advanced porous electrode should have both, micro and nanoscaled features. We report the synthesis of a multiscale open porous foam of NiCoFe and its excellent electrocatalytic performance. At a current density of 1 A cm−2 a 3D dendritic structure with open pores is obtained with pore walls having a morphology that consists of ‘cauliflower-like’ particles containing open multiscaled dendritic structures. Cyclic voltammograms of a smooth NiCoFe electrode are compared with those of the achieved nanodendritic NiCoFe foam electrode. The catalytic activity of the NiCoFe foam is strongly enhanced for both, the cathodic reduction of oxygen and the anodic evolution of oxygen and shows a good reversibility. Therefore the presented new material is promising as bifunctional catalyst in electrochemical energy conversion and storage devices.",
publisher = "Elsevier",
journal = "Nano Energy",
title = "Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition",
pages = "523-529",
volume = "2",
number = "4",
doi = "10.1016/j.nanoen.2012.12.004"
}
Rafailović LD, Gammer C, Ratenberger C, Trišović T, Kleber C, Karnthaler H. Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition. Nano Energy. 2013;2(4):523-529
Rafailović, L. D., Gammer, C., Ratenberger, C., Trišović, T., Kleber, C.,& Karnthaler, H. (2013). Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition.
Nano EnergyElsevier., 2(4), 523-529. 
https://doi.org/10.1016/j.nanoen.2012.12.004
Rafailović Lidija D., Gammer Christoph, Ratenberger Christian, Trišović Tomislav, Kleber Christoph, Karnthaler Hans-Peter, "Enhanced oxygen evolution and reduction reactions of porous ternary NiCoFe foam electrodes prepared by dynamic hydrogen template deposition" 2, no. 4 (2013):523-529,
https://doi.org/10.1016/j.nanoen.2012.12.004 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB