DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Biodiesel synthesis and kinetic analysis based on MnCO3/Na silicate as heterogeneous catalyst

Thumbnail
2018
Full text (3.397Mb)
Authors
Zhang, Yanan
Liu, Hui
Zhu, Xiaochan
Lukić, Ivana
Zdujić, Miodrag
Shen, Xiang
Skala, Dejan
Article (Published version)
Metadata
Show full item record
Abstract
Тhe MnCO3/Na silicate (Mn/Na/Si mole ratio of 4.65:1:1.65) catalyst in the form of solid particles with diameter of 0.99–1.99 mm was used as a catalyst for transesterification of soybean oil in batch autoclave at different conditions: 388–468 K, methanol-to-oil mole ratio 12:1–30:1, catalyst amount based on the mass of oil 0–12.5 %. The complete triacylglycerols (TAG) conversion and high yield of fatty acid methyl ester (FAME) was obtained after 1 h at 458 K, methanol-to-oil mole ratio 30:1 and 10 % of catalyst. Kinetics of transesterification process was analyzed by three models: the simple first order irreversible reaction rate, as well as two more complex models recently reported in literature. The catalyst reuse in transesterification process was tested and the average values of 99.0 % of TAG conversion and 97.5 % of FAME yield were obtained after 8 consecutive runs. Different techniques were used to characterize fresh and used MnCO3/Na silicate catalyst. The determined amounts of ...leached Na (<500 ppm) and Mn (<20 ppm) in biodiesel phase implied that the homogeneous-heterogeneous process influences the catalyst selectivity, whereby leached Na enables the complete transformation of TAG to FAME.

Keywords:
kinetics / MnCO3/Na-silicate / reusability / transesterification
Source:
Journal of the Serbian Chemical Society, 2018, 83, 3, 345-365
Publisher:
  • Belgrade : Serbian Chemical Society
Funding / projects:
  • International S&T Cooperation Program of China, Grant No. 2013DFG92250
  • Nanostructured Functional and Composite Materials in Catalytic and Sorption Processes (RS-45001)

DOI: 10.2298/JSC170612005Z

ISSN: 0352-5139

WoS: 000429093200007

Scopus: 2-s2.0-85045011341
[ Google Scholar ]
3
2
Handle
https://hdl.handle.net/21.15107/rcub_dais_3751
URI
https://dais.sanu.ac.rs/123456789/3751
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Zhang, Yanan
AU  - Liu, Hui
AU  - Zhu, Xiaochan
AU  - Lukić, Ivana
AU  - Zdujić, Miodrag
AU  - Shen, Xiang
AU  - Skala, Dejan
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3751
AB  - Тhe MnCO3/Na silicate (Mn/Na/Si mole ratio of 4.65:1:1.65) catalyst in the form of solid particles with diameter of 0.99–1.99 mm was used as a catalyst for transesterification of soybean oil in batch autoclave at different conditions: 388–468 K, methanol-to-oil mole ratio 12:1–30:1, catalyst amount based on the mass of oil 0–12.5 %. The complete triacylglycerols (TAG) conversion and high yield of fatty acid methyl ester (FAME) was obtained after 1 h at 458 K, methanol-to-oil mole ratio 30:1 and 10 % of catalyst. Kinetics of transesterification process was analyzed by three models: the simple first order irreversible reaction rate, as well as two more complex models recently reported in literature. The catalyst reuse in transesterification process was tested and the average values of 99.0 % of TAG conversion and 97.5 % of FAME yield were obtained after 8 consecutive runs. Different techniques were used to characterize fresh and used MnCO3/Na silicate catalyst. The determined amounts of leached Na (<500 ppm) and Mn (<20 ppm) in biodiesel phase implied that the homogeneous-heterogeneous process influences the catalyst selectivity, whereby leached Na enables the complete transformation of TAG to FAME.
PB  - Belgrade : Serbian Chemical Society
T2  - Journal of the Serbian Chemical Society
T1  - Biodiesel synthesis and kinetic analysis based on MnCO3/Na silicate as heterogeneous catalyst
SP  - 345
EP  - 365
VL  - 83
IS  - 3
DO  - 10.2298/JSC170612005Z
UR  - https://hdl.handle.net/21.15107/rcub_dais_3751
ER  - 
@article{
author = "Zhang, Yanan and Liu, Hui and Zhu, Xiaochan and Lukić, Ivana and Zdujić, Miodrag and Shen, Xiang and Skala, Dejan",
year = "2018",
abstract = "Тhe MnCO3/Na silicate (Mn/Na/Si mole ratio of 4.65:1:1.65) catalyst in the form of solid particles with diameter of 0.99–1.99 mm was used as a catalyst for transesterification of soybean oil in batch autoclave at different conditions: 388–468 K, methanol-to-oil mole ratio 12:1–30:1, catalyst amount based on the mass of oil 0–12.5 %. The complete triacylglycerols (TAG) conversion and high yield of fatty acid methyl ester (FAME) was obtained after 1 h at 458 K, methanol-to-oil mole ratio 30:1 and 10 % of catalyst. Kinetics of transesterification process was analyzed by three models: the simple first order irreversible reaction rate, as well as two more complex models recently reported in literature. The catalyst reuse in transesterification process was tested and the average values of 99.0 % of TAG conversion and 97.5 % of FAME yield were obtained after 8 consecutive runs. Different techniques were used to characterize fresh and used MnCO3/Na silicate catalyst. The determined amounts of leached Na (<500 ppm) and Mn (<20 ppm) in biodiesel phase implied that the homogeneous-heterogeneous process influences the catalyst selectivity, whereby leached Na enables the complete transformation of TAG to FAME.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Journal of the Serbian Chemical Society",
title = "Biodiesel synthesis and kinetic analysis based on MnCO3/Na silicate as heterogeneous catalyst",
pages = "345-365",
volume = "83",
number = "3",
doi = "10.2298/JSC170612005Z",
url = "https://hdl.handle.net/21.15107/rcub_dais_3751"
}
Zhang, Y., Liu, H., Zhu, X., Lukić, I., Zdujić, M., Shen, X.,& Skala, D.. (2018). Biodiesel synthesis and kinetic analysis based on MnCO3/Na silicate as heterogeneous catalyst. in Journal of the Serbian Chemical Society
Belgrade : Serbian Chemical Society., 83(3), 345-365.
https://doi.org/10.2298/JSC170612005Z
https://hdl.handle.net/21.15107/rcub_dais_3751
Zhang Y, Liu H, Zhu X, Lukić I, Zdujić M, Shen X, Skala D. Biodiesel synthesis and kinetic analysis based on MnCO3/Na silicate as heterogeneous catalyst. in Journal of the Serbian Chemical Society. 2018;83(3):345-365.
doi:10.2298/JSC170612005Z
https://hdl.handle.net/21.15107/rcub_dais_3751 .
Zhang, Yanan, Liu, Hui, Zhu, Xiaochan, Lukić, Ivana, Zdujić, Miodrag, Shen, Xiang, Skala, Dejan, "Biodiesel synthesis and kinetic analysis based on MnCO3/Na silicate as heterogeneous catalyst" in Journal of the Serbian Chemical Society, 83, no. 3 (2018):345-365,
https://doi.org/10.2298/JSC170612005Z .,
https://hdl.handle.net/21.15107/rcub_dais_3751 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB