DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Study of the interaction between graphene oxide and 12-tungstophosphoric acid in their nanocomposite

Thumbnail
2018
Mravik-YUCOMAT-2018.pdf (1.304Mb)
Authors
Mravik, Željko
Bajuk Bogdanović, Danica
Marković, Smilja
Kovač, Janez
Holclajtner Antunović, Ivanka
Jovanović, Zoran
Conference object (Published version)
Metadata
Show full item record
Abstract
The rich surface chemistry and large surface area of graphene oxide (GO) provide a platform for various functional materials that synergistically enhance charge storage properties of the composite. In present work we have investigated interaction between GO and 12- thungstophosphoric acid (WPA) in their nanocomposites as a function of different mass ratio of constituents. For this purpose, the Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS), temperature programmed desorption method (TPD) and thermogravimetric/differential thermal analysis (TGA-DTA) methods were used. FTIR spectra have shown shifts and splitting of characteristic bands of WPA as a result of interactions with GO. Both XPS and TPD methods have shown an initial decrease of the total amount of surface oxygen groups of GO, with a minimum at around 10 wt.% of WPA, above which a restoration of the amount of surface oxygen groups was noticed. TGA-DTA analysis revealed an improved thermal s...tability of the material up to 25 wt.% of WPA; at higher loading of WPA the thermal properties of nanocomposite became alike to the ones of individual components. The obtained results suggest optimal conditions for preparation of GO-WPA nanocomposites for electrochemical charge storage applications.

Keywords:
graphene oxide / 12-tungstophosphoric acid / nanocomposites / electrochemical applications / functional materials
Source:
Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018, 2018, 110-110
Publisher:
  • Belgrade : Materials Research Society of Serbia
Funding / projects:
  • Lithium-ion batteries and fuel cells - research and development (RS-45014)
  • Physics and Chemistry with Ion Beams (RS-45006)
  • Electroconducting and redox-active polymers and oligomers: synthesis, structure, properties and applications (RS-172043)

ISBN: 978-86-919111-3-3

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_3666
URI
https://dais.sanu.ac.rs/123456789/3666
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Mravik, Željko
AU  - Bajuk Bogdanović, Danica
AU  - Marković, Smilja
AU  - Kovač, Janez
AU  - Holclajtner Antunović, Ivanka
AU  - Jovanović, Zoran
PY  - 2018
UR  - https://dais.sanu.ac.rs/123456789/3666
AB  - The rich surface chemistry and large surface area of graphene oxide (GO) provide a platform for various functional materials that synergistically enhance charge storage properties of the composite. In present work we have investigated interaction between GO and 12- thungstophosphoric acid (WPA) in their nanocomposites as a function of different mass ratio of constituents. For this purpose, the Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS), temperature programmed desorption method (TPD) and thermogravimetric/differential thermal analysis (TGA-DTA) methods were used. FTIR spectra have shown shifts and splitting of characteristic bands of WPA as a result of interactions with GO. Both XPS and TPD methods have shown an initial decrease of the total amount of surface oxygen groups of GO, with a minimum at around 10 wt.% of WPA, above which a restoration of the amount of surface oxygen groups was noticed. TGA-DTA analysis revealed an improved thermal stability of the material up to 25 wt.% of WPA; at higher loading of WPA the thermal properties of nanocomposite became alike to the ones of individual components. The obtained results suggest optimal conditions for preparation of GO-WPA nanocomposites for electrochemical charge storage applications.
PB  - Belgrade : Materials Research Society of Serbia
C3  - Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
T1  - Study of the interaction between graphene oxide and 12-tungstophosphoric acid in their nanocomposite
SP  - 110
EP  - 110
UR  - https://hdl.handle.net/21.15107/rcub_dais_3666
ER  - 
@conference{
author = "Mravik, Željko and Bajuk Bogdanović, Danica and Marković, Smilja and Kovač, Janez and Holclajtner Antunović, Ivanka and Jovanović, Zoran",
year = "2018",
abstract = "The rich surface chemistry and large surface area of graphene oxide (GO) provide a platform for various functional materials that synergistically enhance charge storage properties of the composite. In present work we have investigated interaction between GO and 12- thungstophosphoric acid (WPA) in their nanocomposites as a function of different mass ratio of constituents. For this purpose, the Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectrometry (XPS), temperature programmed desorption method (TPD) and thermogravimetric/differential thermal analysis (TGA-DTA) methods were used. FTIR spectra have shown shifts and splitting of characteristic bands of WPA as a result of interactions with GO. Both XPS and TPD methods have shown an initial decrease of the total amount of surface oxygen groups of GO, with a minimum at around 10 wt.% of WPA, above which a restoration of the amount of surface oxygen groups was noticed. TGA-DTA analysis revealed an improved thermal stability of the material up to 25 wt.% of WPA; at higher loading of WPA the thermal properties of nanocomposite became alike to the ones of individual components. The obtained results suggest optimal conditions for preparation of GO-WPA nanocomposites for electrochemical charge storage applications.",
publisher = "Belgrade : Materials Research Society of Serbia",
journal = "Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018",
title = "Study of the interaction between graphene oxide and 12-tungstophosphoric acid in their nanocomposite",
pages = "110-110",
url = "https://hdl.handle.net/21.15107/rcub_dais_3666"
}
Mravik, Ž., Bajuk Bogdanović, D., Marković, S., Kovač, J., Holclajtner Antunović, I.,& Jovanović, Z.. (2018). Study of the interaction between graphene oxide and 12-tungstophosphoric acid in their nanocomposite. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018
Belgrade : Materials Research Society of Serbia., 110-110.
https://hdl.handle.net/21.15107/rcub_dais_3666
Mravik Ž, Bajuk Bogdanović D, Marković S, Kovač J, Holclajtner Antunović I, Jovanović Z. Study of the interaction between graphene oxide and 12-tungstophosphoric acid in their nanocomposite. in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018. 2018;:110-110.
https://hdl.handle.net/21.15107/rcub_dais_3666 .
Mravik, Željko, Bajuk Bogdanović, Danica, Marković, Smilja, Kovač, Janez, Holclajtner Antunović, Ivanka, Jovanović, Zoran, "Study of the interaction between graphene oxide and 12-tungstophosphoric acid in their nanocomposite" in Programme and The Book of Abstracts / Twentieth Annual Conference YUCOMAT 2018, Herceg Novi, September 3-7, 2018 (2018):110-110,
https://hdl.handle.net/21.15107/rcub_dais_3666 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB