DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones

Authorized Users Only
2013
Authors
Ignjatović, Nenad
Ajduković, Zorica
Savić, Vojin
Najman, Stevo
Mihailović, Dragan
Vasiljević, Perica
Stojanović, Zoran S.
Uskoković, Vuk
Uskoković, Dragan
Article (Published version)
Metadata
Show full item record
Abstract
Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alv...eolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.

Keywords:
cobalt-substituted hydroxyapatite / bone regeneration / nanoparticles / osteoporosis
Source:
Journal of Materials Science: Materials in Medicine, 2013, 24, 2, 343-354
Publisher:
  • Springer
Funding / projects:
  • Molecular designing of nanoparticles with controlled morphological and physicochemical characteristics and functional materials based on them (RS-45004)
  • United States National Institutes of Health (NIH) / National Institute of Dental and Craniofacial Research (NIDCR), Grant K99-DE021416
  • United States National Institutes of Health (NIH) / National Institute of Dental and Craniofacial Research (NIDCR), Grant K99-DE021416

DOI: 10.1007/s10856-012-4793-1

ISSN: 0957-4530

PubMed: 23090835

WoS: 000314775100008

Scopus: 2-s2.0-84878374725
[ Google Scholar ]
74
62
Handle
https://hdl.handle.net/21.15107/rcub_dais_353
URI
https://dais.sanu.ac.rs/123456789/353
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Ignjatović, Nenad
AU  - Ajduković, Zorica
AU  - Savić, Vojin
AU  - Najman, Stevo
AU  - Mihailović, Dragan
AU  - Vasiljević, Perica
AU  - Stojanović, Zoran S.
AU  - Uskoković, Vuk
AU  - Uskoković, Dragan
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/353
AB  - Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.
PB  - Springer
T2  - Journal of Materials Science: Materials in Medicine
T1  - Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones
SP  - 343
EP  - 354
VL  - 24
IS  - 2
DO  - 10.1007/s10856-012-4793-1
UR  - https://hdl.handle.net/21.15107/rcub_dais_353
ER  - 
@article{
author = "Ignjatović, Nenad and Ajduković, Zorica and Savić, Vojin and Najman, Stevo and Mihailović, Dragan and Vasiljević, Perica and Stojanović, Zoran S. and Uskoković, Vuk and Uskoković, Dragan",
year = "2013",
abstract = "Indications exist that paramagnetic calcium phosphates may be able to promote regeneration of bone faster than their regular, diamagnetic counterparts. In this study, analyzed was the influence of paramagnetic cobalt-substituted hydroxyapatite nanoparticles on osteoporotic alveolar bone regeneration in rats. Simultaneously, biocompatibility of the material was tested in vitro, on osteoblastic MC3T3-E1 and epithelial Caco-2 cells in culture. The material was shown to be biocompatible and nontoxic when added to epithelial monolayers in vitro, while it caused a substantial decrease in the cell viability as well as deformation of the cytoskeleton and cell morphology when incubated with the osteoblastic cells. In the course of 6 months after the implantation of the material containing different amounts of cobalt, ranging from 5 to 12 wt%, in the osteoporotic alveolar bone of the lower jaw, the following parameters were investigated: histopathological parameters, alkaline phosphatase and alveolar bone density. The best result in terms of osteoporotic bone tissue regeneration was observed for hydroxyapatite nanoparticles with the largest content of cobalt ions. The histological analysis showed a high level of reparatory ability of the nanoparticulate material implanted in the bone defect, paralleled by a corresponding increase in the alveolar bone density. The combined effect of growth factors from autologous plasma admixed to cobalt-substituted hydroxyapatite was furthermore shown to have a crucial effect on the augmented osteoporotic bone regeneration upon the implantation of the biomaterial investigated in this study.",
publisher = "Springer",
journal = "Journal of Materials Science: Materials in Medicine",
title = "Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones",
pages = "343-354",
volume = "24",
number = "2",
doi = "10.1007/s10856-012-4793-1",
url = "https://hdl.handle.net/21.15107/rcub_dais_353"
}
Ignjatović, N., Ajduković, Z., Savić, V., Najman, S., Mihailović, D., Vasiljević, P., Stojanović, Z. S., Uskoković, V.,& Uskoković, D.. (2013). Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. in Journal of Materials Science: Materials in Medicine
Springer., 24(2), 343-354.
https://doi.org/10.1007/s10856-012-4793-1
https://hdl.handle.net/21.15107/rcub_dais_353
Ignjatović N, Ajduković Z, Savić V, Najman S, Mihailović D, Vasiljević P, Stojanović ZS, Uskoković V, Uskoković D. Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. in Journal of Materials Science: Materials in Medicine. 2013;24(2):343-354.
doi:10.1007/s10856-012-4793-1
https://hdl.handle.net/21.15107/rcub_dais_353 .
Ignjatović, Nenad, Ajduković, Zorica, Savić, Vojin, Najman, Stevo, Mihailović, Dragan, Vasiljević, Perica, Stojanović, Zoran S., Uskoković, Vuk, Uskoković, Dragan, "Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones" in Journal of Materials Science: Materials in Medicine, 24, no. 2 (2013):343-354,
https://doi.org/10.1007/s10856-012-4793-1 .,
https://hdl.handle.net/21.15107/rcub_dais_353 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB