DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analytical modeling of activation procedure applied in α-alumina thermo-mechanical synthesis

Authorized Users Only
2015
Authors
Terzić, Anja
Pezo, Lato
Andrić, Ljubiša
Mitić, Vojislav
Article (Published version)
Metadata
Show full item record
Abstract
The impact of the mechanical processing parameters on the alumina grain-size distribution affiliated characteristics and on the γ to α phase transformation rate was investigated. The moderation in the alumina samples behavior has been correlated to the granulometric and mineralogical changes induced by activation via an ultra-centrifugal mill. The assessment of the activation process variables influence on the final quality of the product parameters was conveyed in order to optimize the mechanical treatment of the alumina, which otherwise could be regarded as either energetically or economically unsustainable procedure. The Response Surface Method, Standard Score Analysis and Principal Component Analysis were applied as means of the mechanical activation optimization. The r 2 values obtained by developed models were in range from 0.816 to 0.988. The established mathematical models were able to precisely predict the quality parameters in a broad range of processing parameters. The Stand...ard Score Analysis emphasized that the optimal output sample was obtained using a sieve mesh of 120μm set of processing parameters (SS=0.96). Diverse comparison analyses disclosed that the optimal set of activation process parameters could reduce the negative effect of γ-alumina samples immanent properties on the final score, and furthermore to enhance the rate of γ to α transition which would improve energetic and economic sustainability of the alumina phase transformation procedure. © 2015 Elsevier Ltd and Techna Group S.r.l.

Keywords:
milling / electron microscopy / grain size / Al2O3 / refractories / thermal applications / Response Surface Analysis
Source:
Ceramics International, 2015, 41, 9, Part B, 11908-11917
Publisher:
  • Elsevier
Funding / projects:
  • Osmotic dehydration of food - energy and ecological aspects of sustainable production (RS-31055)
  • Development and application of multifunctional materials using domestic raw materials in upgraded processing lines (RS-45008)
  • Directed synthesis, structure and properties of multifunctional materials (RS-172057)

DOI: 10.1016/j.ceramint.2015.05.158

ISSN: 0272-8842

WoS: 000359165300042

Scopus: 2-s2.0-84930911382
[ Google Scholar ]
9
7
Handle
https://hdl.handle.net/21.15107/rcub_dais_3525
URI
https://dais.sanu.ac.rs/123456789/3525
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Terzić, Anja
AU  - Pezo, Lato
AU  - Andrić, Ljubiša
AU  - Mitić, Vojislav
PY  - 2015
UR  - https://dais.sanu.ac.rs/123456789/3525
AB  - The impact of the mechanical processing parameters on the alumina grain-size distribution affiliated characteristics and on the γ to α phase transformation rate was investigated. The moderation in the alumina samples behavior has been correlated to the granulometric and mineralogical changes induced by activation via an ultra-centrifugal mill. The assessment of the activation process variables influence on the final quality of the product parameters was conveyed in order to optimize the mechanical treatment of the alumina, which otherwise could be regarded as either energetically or economically unsustainable procedure. The Response Surface Method, Standard Score Analysis and Principal Component Analysis were applied as means of the mechanical activation optimization. The r 2 values obtained by developed models were in range from 0.816 to 0.988. The established mathematical models were able to precisely predict the quality parameters in a broad range of processing parameters. The Standard Score Analysis emphasized that the optimal output sample was obtained using a sieve mesh of 120μm set of processing parameters (SS=0.96). Diverse comparison analyses disclosed that the optimal set of activation process parameters could reduce the negative effect of γ-alumina samples immanent properties on the final score, and furthermore to enhance the rate of γ to α transition which would improve energetic and economic sustainability of the alumina phase transformation procedure. © 2015 Elsevier Ltd and Techna Group S.r.l.
PB  - Elsevier
T2  - Ceramics International
T1  - Analytical modeling of activation procedure applied in α-alumina thermo-mechanical synthesis
SP  - 11908
EP  - 11917
VL  - 41
IS  - 9, Part B
DO  - 10.1016/j.ceramint.2015.05.158
UR  - https://hdl.handle.net/21.15107/rcub_dais_3525
ER  - 
@article{
author = "Terzić, Anja and Pezo, Lato and Andrić, Ljubiša and Mitić, Vojislav",
year = "2015",
abstract = "The impact of the mechanical processing parameters on the alumina grain-size distribution affiliated characteristics and on the γ to α phase transformation rate was investigated. The moderation in the alumina samples behavior has been correlated to the granulometric and mineralogical changes induced by activation via an ultra-centrifugal mill. The assessment of the activation process variables influence on the final quality of the product parameters was conveyed in order to optimize the mechanical treatment of the alumina, which otherwise could be regarded as either energetically or economically unsustainable procedure. The Response Surface Method, Standard Score Analysis and Principal Component Analysis were applied as means of the mechanical activation optimization. The r 2 values obtained by developed models were in range from 0.816 to 0.988. The established mathematical models were able to precisely predict the quality parameters in a broad range of processing parameters. The Standard Score Analysis emphasized that the optimal output sample was obtained using a sieve mesh of 120μm set of processing parameters (SS=0.96). Diverse comparison analyses disclosed that the optimal set of activation process parameters could reduce the negative effect of γ-alumina samples immanent properties on the final score, and furthermore to enhance the rate of γ to α transition which would improve energetic and economic sustainability of the alumina phase transformation procedure. © 2015 Elsevier Ltd and Techna Group S.r.l.",
publisher = "Elsevier",
journal = "Ceramics International",
title = "Analytical modeling of activation procedure applied in α-alumina thermo-mechanical synthesis",
pages = "11908-11917",
volume = "41",
number = "9, Part B",
doi = "10.1016/j.ceramint.2015.05.158",
url = "https://hdl.handle.net/21.15107/rcub_dais_3525"
}
Terzić, A., Pezo, L., Andrić, L.,& Mitić, V.. (2015). Analytical modeling of activation procedure applied in α-alumina thermo-mechanical synthesis. in Ceramics International
Elsevier., 41(9, Part B), 11908-11917.
https://doi.org/10.1016/j.ceramint.2015.05.158
https://hdl.handle.net/21.15107/rcub_dais_3525
Terzić A, Pezo L, Andrić L, Mitić V. Analytical modeling of activation procedure applied in α-alumina thermo-mechanical synthesis. in Ceramics International. 2015;41(9, Part B):11908-11917.
doi:10.1016/j.ceramint.2015.05.158
https://hdl.handle.net/21.15107/rcub_dais_3525 .
Terzić, Anja, Pezo, Lato, Andrić, Ljubiša, Mitić, Vojislav, "Analytical modeling of activation procedure applied in α-alumina thermo-mechanical synthesis" in Ceramics International, 41, no. 9, Part B (2015):11908-11917,
https://doi.org/10.1016/j.ceramint.2015.05.158 .,
https://hdl.handle.net/21.15107/rcub_dais_3525 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB