DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing

Authorized Users Only
2013
Authors
Dugandžić, Ivan
Lojpur, Vesna
Mančić, Lidija
Dramićanin, Miroslav
Rabanal, Maria Eugenia
Hashishin, Takeshi
Tan, Z.
Ohara, Satoshi
Milošević, Olivera
Article (Published version)
Metadata
Show full item record
Abstract
The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.
Keywords:
aerosol / yttrium oxide / morphology / phosphors / up-conversion
Source:
Advanced Powder Technology, 2013, 24, 5, 852-857
Publisher:
  • Elsevier
Funding / projects:
  • Rational design and synthesis of biologically active and coordination compounds and functional materials, relevant for (bio)nanotechnology (RS-172035)
  • SPS fellowship, 2011/2012
Note:
  • Peer-reviewed manuscript: https://hdl.handle.net/21.15107/rcub_dais_15971

DOI: 10.1016/j.apt.2013.02.011

ISSN: 0921-8831

WoS: 000324357400009

Scopus: 2-s2.0-84883786493
[ Google Scholar ]
12
12
Handle
https://hdl.handle.net/21.15107/rcub_dais_345
URI
https://dais.sanu.ac.rs/123456789/345
Collections
  • ИТН САНУ - Општа колекција / ITS SASA - General collection
Institution/Community
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - JOUR
AU  - Dugandžić, Ivan
AU  - Lojpur, Vesna
AU  - Mančić, Lidija
AU  - Dramićanin, Miroslav
AU  - Rabanal, Maria Eugenia
AU  - Hashishin, Takeshi
AU  - Tan, Z.
AU  - Ohara, Satoshi
AU  - Milošević, Olivera
PY  - 2013
UR  - https://dais.sanu.ac.rs/123456789/345
AB  - The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.
PB  - Elsevier
T2  - Advanced Powder Technology
T1  - Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing
SP  - 852
EP  - 857
VL  - 24
IS  - 5
DO  - 10.1016/j.apt.2013.02.011
UR  - https://hdl.handle.net/21.15107/rcub_dais_345
ER  - 
@article{
author = "Dugandžić, Ivan and Lojpur, Vesna and Mančić, Lidija and Dramićanin, Miroslav and Rabanal, Maria Eugenia and Hashishin, Takeshi and Tan, Z. and Ohara, Satoshi and Milošević, Olivera",
year = "2013",
abstract = "The opportunities of the hot wall aerosol synthesis, i.e. conventional spray pyrolysis (CSP) method are demonstrated for the generation of highly spherical three-dimensional (3D) nanostructured phosphor particles with uniformly distributed components, phases and nano-clustered inner structure. With the presumption that certain particle morphology is formed during the evaporation/drying stage, the aerosol transport properties and powder generation are correlated with the particles structural and morphological features. With the help of various analyzing techniques like Field Emission Scanning Electron Microscopy (FE-SEM), Transmission Electron Microscopy (TEM) coupled with energy dispersive X-ray Analysis and STEM mode (TEM/EDS), X-ray Powder Diffraction (XRPD) and fluorescence measurements the feasible processing of up-conversion rare-earth Y2O3:Er, Yb phosphors powders are discussed.",
publisher = "Elsevier",
journal = "Advanced Powder Technology",
title = "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing",
pages = "852-857",
volume = "24",
number = "5",
doi = "10.1016/j.apt.2013.02.011",
url = "https://hdl.handle.net/21.15107/rcub_dais_345"
}
Dugandžić, I., Lojpur, V., Mančić, L., Dramićanin, M., Rabanal, M. E., Hashishin, T., Tan, Z., Ohara, S.,& Milošević, O.. (2013). Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. in Advanced Powder Technology
Elsevier., 24(5), 852-857.
https://doi.org/10.1016/j.apt.2013.02.011
https://hdl.handle.net/21.15107/rcub_dais_345
Dugandžić I, Lojpur V, Mančić L, Dramićanin M, Rabanal ME, Hashishin T, Tan Z, Ohara S, Milošević O. Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing. in Advanced Powder Technology. 2013;24(5):852-857.
doi:10.1016/j.apt.2013.02.011
https://hdl.handle.net/21.15107/rcub_dais_345 .
Dugandžić, Ivan, Lojpur, Vesna, Mančić, Lidija, Dramićanin, Miroslav, Rabanal, Maria Eugenia, Hashishin, Takeshi, Tan, Z., Ohara, Satoshi, Milošević, Olivera, "Aerosol route as a feasible bottom-up chemical approach for up-converting phosphor particles processing" in Advanced Powder Technology, 24, no. 5 (2013):852-857,
https://doi.org/10.1016/j.apt.2013.02.011 .,
https://hdl.handle.net/21.15107/rcub_dais_345 .

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

CoreTrustSealre3dataOpenAIRERCUB