DAIS - Digital Archive of the Serbian Academy of Sciences and Arts
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrilic)
    • Serbian (Latin)
  • Login
View Item 
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
  •   DAIS
  • Институт техничких наука САНУ / Institute of Technical Sciences of SASA
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nanostructured (Y1-xGdx)2O 3:Eu3+ powders obtained through aerosol synthesis

Authorized Users Only
2010
Authors
Marinković, Katarina
Mančić, Lidija
Rabanal, Maria Eugenia
Gómez, Luz Stella
Dramićanin, Miroslav
Milošević, Olivera
Contributors
Ewsuk, Kevin
Naito, Makio
Kakeshita, Tomoyuki
Kirihara, Soshu
Uematsu, Keizo
Abe, Hiroya
Conference object (Published version)
,
The American Ceramic Society
Metadata
Show full item record
Abstract
In this study, nanophase, spherical, polycrystalline (Y 1-xGdx)2O3:Eu3+phosphor particles were synthesized from aerosols of corresponding nitrate solutions, ultrasonically generated at 1.3 MHz frequency, and thermally decomposed at 900 and 1100°C. Structural and morphological analyses done by X-ray powder diffraction (XRPD) and transmission electron microscopy analysis (TEM) implied the formation of non-aggregated spherical, submicronic particles with smooth particle surfaces and filled morphology. The phase development and structural changes, determined using the Topas program, implied a nanocrystalline inner structure (crystallites < 20 nm), that was also confirmed by SAED analysis. A bcc Ia-3 cubic phase was identified in all as-prepared samples, apart from the mixed oxide with the gadolinium content > 75%, where the existence of a secondary, fee Fm-3m cubic phase is determined. Only Ia-3 cubic phase was identified in thermally treated samples (1100 °C), while the powder morph...ological features were maintained, followed by increase in powder crystallinity and phase homogeneity. Functional properties were analyzed by means of photoluminescent analysis. Emission spectra showed typical Eu 3+ 5D0→7Fi (i = 0, 1, 2, 3, 4) transitions with the dominant red emission peak at 611 nm.

Keywords:
aerosol synthesis / XRPD / TEM / nanocrystalline materials
Source:
Characterization and Control of Interfaces for High Quality Advanced Materials III: Proceedings of the Third International Conference on Characterization and Control of Interfaces for High Quality Advanced Materials Kurashiki, Japan (2009, 2010, 219, 83-90
Publisher:
  • Hoboken, NJ : John Wiley & Sons
Projects:
  • Synthesis, characterization and activity of organic and coordination composition and their application in (bio) nanotechnology (RS-142010)
Note:
  • Ceramic Transactions, Volume 219

ISBN: 978-047090917-1

ISSN: 1042-1122

Scopus: 2-s2.0-77956052911
[ Google Scholar ]
2
URI
http://dais.sanu.ac.rs/123456789/3416
Collections
  • ITN SANU - Opšta kolekcija / ITS SASA - General collection
Institution
Институт техничких наука САНУ / Institute of Technical Sciences of SASA
TY  - CONF
AU  - Marinković, Katarina
AU  - Mančić, Lidija
AU  - Rabanal, Maria Eugenia
AU  - Gómez, Luz Stella
AU  - Dramićanin, Miroslav
AU  - Milošević, Olivera
PY  - 2010
UR  - http://dais.sanu.ac.rs/123456789/3416
AB  - In this study, nanophase, spherical, polycrystalline (Y 1-xGdx)2O3:Eu3+phosphor particles were synthesized from aerosols of corresponding nitrate solutions, ultrasonically generated at 1.3 MHz frequency, and thermally decomposed at 900 and 1100°C. Structural and morphological analyses done by X-ray powder diffraction (XRPD) and transmission electron microscopy analysis (TEM) implied the formation of non-aggregated spherical, submicronic particles with smooth particle surfaces and filled morphology. The phase development and structural changes, determined using the Topas program, implied a nanocrystalline inner structure (crystallites < 20 nm), that was also confirmed by SAED analysis. A bcc Ia-3 cubic phase was identified in all as-prepared samples, apart from the mixed oxide with the gadolinium content > 75%, where the existence of a secondary, fee Fm-3m cubic phase is determined. Only Ia-3 cubic phase was identified in thermally treated samples (1100 °C), while the powder morphological features were maintained, followed by increase in powder crystallinity and phase homogeneity. Functional properties were analyzed by means of photoluminescent analysis. Emission spectra showed typical Eu 3+ 5D0→7Fi (i = 0, 1, 2, 3, 4) transitions with the dominant red emission peak at 611 nm.
PB  - Hoboken, NJ : John Wiley & Sons
C3  - Characterization and Control of Interfaces for High Quality Advanced Materials III: Proceedings of the Third International Conference on Characterization and Control of Interfaces for High Quality Advanced Materials
Kurashiki, Japan (2009
T1  - Nanostructured (Y1-xGdx)2O 3:Eu3+ powders obtained through aerosol synthesis
SP  - 83
EP  - 90
VL  - 219
ER  - 
@conference{
editor = "Ewsuk, Kevin, Naito, Makio, Kakeshita, Tomoyuki, Kirihara, Soshu, Uematsu, Keizo, Abe, Hiroya",
author = "Marinković, Katarina and Mančić, Lidija and Rabanal, Maria Eugenia and Gómez, Luz Stella and Dramićanin, Miroslav and Milošević, Olivera",
year = "2010",
url = "http://dais.sanu.ac.rs/123456789/3416",
abstract = "In this study, nanophase, spherical, polycrystalline (Y 1-xGdx)2O3:Eu3+phosphor particles were synthesized from aerosols of corresponding nitrate solutions, ultrasonically generated at 1.3 MHz frequency, and thermally decomposed at 900 and 1100°C. Structural and morphological analyses done by X-ray powder diffraction (XRPD) and transmission electron microscopy analysis (TEM) implied the formation of non-aggregated spherical, submicronic particles with smooth particle surfaces and filled morphology. The phase development and structural changes, determined using the Topas program, implied a nanocrystalline inner structure (crystallites < 20 nm), that was also confirmed by SAED analysis. A bcc Ia-3 cubic phase was identified in all as-prepared samples, apart from the mixed oxide with the gadolinium content > 75%, where the existence of a secondary, fee Fm-3m cubic phase is determined. Only Ia-3 cubic phase was identified in thermally treated samples (1100 °C), while the powder morphological features were maintained, followed by increase in powder crystallinity and phase homogeneity. Functional properties were analyzed by means of photoluminescent analysis. Emission spectra showed typical Eu 3+ 5D0→7Fi (i = 0, 1, 2, 3, 4) transitions with the dominant red emission peak at 611 nm.",
publisher = "Hoboken, NJ : John Wiley & Sons",
journal = "Characterization and Control of Interfaces for High Quality Advanced Materials III: Proceedings of the Third International Conference on Characterization and Control of Interfaces for High Quality Advanced Materials
Kurashiki, Japan (2009",
title = "Nanostructured (Y1-xGdx)2O 3:Eu3+ powders obtained through aerosol synthesis",
pages = "83-90",
volume = "219"
}
Ewsuk K, Naito M, Kakeshita T, Kirihara S, Uematsu K, Abe H, Marinković K, Mančić L, Rabanal ME, Gómez LS, Dramićanin M, Milošević O. Nanostructured (Y1-xGdx)2O 3:Eu3+ powders obtained through aerosol synthesis. Characterization and Control of Interfaces for High Quality Advanced Materials III: Proceedings of the Third International Conference on Characterization and Control of Interfaces for High Quality Advanced Materials
Kurashiki, Japan (2009. 2010;219:83-90
Ewsuk, K., Naito, M., Kakeshita, T., Kirihara, S., Uematsu, K., Abe, H., Marinković, K., Mančić, L., Rabanal, M. E., Gómez, L. S., Dramićanin, M.,& Milošević, O. (2010). Nanostructured (Y1-xGdx)2O 3:Eu3+ powders obtained through aerosol synthesis.
Characterization and Control of Interfaces for High Quality Advanced Materials III: Proceedings of the Third International Conference on Characterization and Control of Interfaces for High Quality Advanced Materials
Kurashiki, Japan (2009Hoboken, NJ : John Wiley & Sons., 219, 83-90. 
Ewsuk Kevin, Naito Makio, Kakeshita Tomoyuki, Kirihara Soshu, Uematsu Keizo, Abe Hiroya, Marinković Katarina, Mančić Lidija, Rabanal Maria Eugenia, Gómez Luz Stella, Dramićanin Miroslav, Milošević Olivera, "Nanostructured (Y1-xGdx)2O 3:Eu3+ powders obtained through aerosol synthesis" 219 (2010):83-90

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutionsAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About DAIS - Digital Archive of the Serbian Academy of Sciences and Arts | Send Feedback

re3dataOpenAIRERCUB